e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnetic Nd2Fe14B - our proposal. Practically all "magnets" in our store are in stock for immediate delivery (see the list). Check out the magnet price list for more details see the magnet price list

Magnet for treasure hunters F200 GOLD

Where to purchase powerful neodymium magnet? Magnet holders in solid and airtight steel casing are excellent for use in variable and difficult climate conditions, including during snow and rain check...

magnetic holders

Magnetic holders can be applied to improve manufacturing, exploring underwater areas, or searching for meteors from gold see more...

We promise to ship your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x400 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130463

GTIN: 5906301813347

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

400 mm

Weight

2215 g

1266.90 with VAT / pcs + price for transport

1030.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1030.00 ZŁ
1266.90 ZŁ
price from 5 pcs
927.00 ZŁ
1140.21 ZŁ

Do you have problems deciding?

Call us now +48 22 499 98 98 alternatively drop us a message via form our website.
Parameters as well as shape of a neodymium magnet can be tested using our power calculator.

Same-day processing for orders placed before 14:00.

SM 32x400 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x400 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130463
GTIN
5906301813347
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
400 mm [±0,1 mm]
Weight
2215 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are placed in a construction made of stainless steel mostly AISI304. As a result, it is possible to effectively segregate ferromagnetic particles from other materials. An important element of its operation is the repulsion of magnetic poles N and S, which allows magnetic substances to be targeted. The thickness of the magnet and its structure pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to separate ferromagnetic elements. If the cans are made from ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are employed in food production to clear metallic contaminants, for example iron fragments or iron dust. Our rods are constructed from durable acid-resistant steel, AISI 304, suitable for contact with food.
Magnetic rollers, otherwise magnetic separators, find application in food production, metal separation as well as waste processing. They help in extracting iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers are composed of a neodymium magnet embedded in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the greater the magnet's power, the more efficient it is. Nevertheless, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and specific needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines will be short. By contrast, in the case of a thicker magnet, the force lines are longer and extend over a greater distance.
For making the casings of magnetic separators - rollers, most often stainless steel is utilized, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, AISI 316 steel exhibits the best resistance thanks to its outstanding corrosion resistance.
Magnetic rollers are characterized by their specific arrangement of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other separators that often use complex filtration systems.
Technical designations and terms related to magnetic separators include among others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, it is recommended regularly cleaning them from deposits, avoiding extreme temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can rust and lose their power. Testing of the rollers should be carried out once every 24 months. Care should be taken, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They have constant strength, and over more than 10 years their attraction force decreases symbolically – ~1% (according to theory),
  • They are highly resistant to demagnetization caused by external magnetic fields,
  • The use of a decorative gold surface provides a refined finish,
  • They have very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • The ability for accurate shaping or adjustment to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
  • Key role in advanced technical fields – they serve a purpose in hard drives, electric motors, clinical machines or even technologically developed systems,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They can break when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture while also strengthens its overall resistance,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a moist environment. For outdoor use, we recommend using moisture-resistant magnets, such as those made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing threads directly in the magnet,
  • Possible threat related to magnet particles may arise, especially if swallowed, which is significant in the family environments. It should also be noted that small elements from these devices have the potential to disrupt scanning after being swallowed,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Detachment force of the magnet in optimal conditionswhat it depends on?

The given lifting capacity of the magnet means the maximum lifting force, calculated in a perfect environment, that is:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • with vertical force applied
  • under standard ambient temperature

Magnet lifting force in use – key factors

In practice, the holding capacity of a magnet is conditioned by these factors, in descending order of importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet’s surface and the plate reduces the lifting capacity.

Precautions with Neodymium Magnets

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If joining of neodymium magnets is not controlled, then they may crumble and crack. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets are known for being fragile, which can cause them to become damaged.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

 It is essential to keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Caution!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98