MPL 40x15x5x2[7/3.5] / N38 - lamellar magnet
lamellar magnet
Catalog no 020154
GTIN/EAN: 5906301811602
length
40 mm [±0,1 mm]
Width
15 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
22.5 g
Magnetization Direction
↑ axial
Load capacity
11.35 kg / 111.37 N
Magnetic Induction
249.11 mT / 2491 Gs
Coating
[NiCuNi] Nickel
15.07 ZŁ with VAT / pcs + price for transport
12.25 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 22 499 98 98
otherwise send us a note by means of
form
the contact page.
Specifications as well as form of a magnet can be reviewed with our
magnetic mass calculator.
Same-day processing for orders placed before 14:00.
Technical parameters of the product - MPL 40x15x5x2[7/3.5] / N38 - lamellar magnet
Specification / characteristics - MPL 40x15x5x2[7/3.5] / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020154 |
| GTIN/EAN | 5906301811602 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 40 mm [±0,1 mm] |
| Width | 15 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 22.5 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 11.35 kg / 111.37 N |
| Magnetic Induction ~ ? | 249.11 mT / 2491 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the assembly - report
The following values represent the outcome of a engineering calculation. Values are based on models for the class Nd2Fe14B. Actual performance may differ. Please consider these data as a preliminary roadmap during assembly planning.
Table 1: Static pull force (force vs distance) - power drop
MPL 40x15x5x2[7/3.5] / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2490 Gs
249.0 mT
|
11.35 kg / 25.02 pounds
11350.0 g / 111.3 N
|
crushing |
| 1 mm |
2306 Gs
230.6 mT
|
9.73 kg / 21.45 pounds
9731.3 g / 95.5 N
|
medium risk |
| 2 mm |
2095 Gs
209.5 mT
|
8.03 kg / 17.70 pounds
8028.8 g / 78.8 N
|
medium risk |
| 3 mm |
1877 Gs
187.7 mT
|
6.45 kg / 14.21 pounds
6445.4 g / 63.2 N
|
medium risk |
| 5 mm |
1472 Gs
147.2 mT
|
3.97 kg / 8.74 pounds
3965.1 g / 38.9 N
|
medium risk |
| 10 mm |
792 Gs
79.2 mT
|
1.15 kg / 2.53 pounds
1147.1 g / 11.3 N
|
safe |
| 15 mm |
454 Gs
45.4 mT
|
0.38 kg / 0.83 pounds
376.9 g / 3.7 N
|
safe |
| 20 mm |
278 Gs
27.8 mT
|
0.14 kg / 0.31 pounds
141.4 g / 1.4 N
|
safe |
| 30 mm |
122 Gs
12.2 mT
|
0.03 kg / 0.06 pounds
27.0 g / 0.3 N
|
safe |
| 50 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.01 pounds
2.3 g / 0.0 N
|
safe |
Table 2: Slippage force (wall)
MPL 40x15x5x2[7/3.5] / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.27 kg / 5.00 pounds
2270.0 g / 22.3 N
|
| 1 mm | Stal (~0.2) |
1.95 kg / 4.29 pounds
1946.0 g / 19.1 N
|
| 2 mm | Stal (~0.2) |
1.61 kg / 3.54 pounds
1606.0 g / 15.8 N
|
| 3 mm | Stal (~0.2) |
1.29 kg / 2.84 pounds
1290.0 g / 12.7 N
|
| 5 mm | Stal (~0.2) |
0.79 kg / 1.75 pounds
794.0 g / 7.8 N
|
| 10 mm | Stal (~0.2) |
0.23 kg / 0.51 pounds
230.0 g / 2.3 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 0.17 pounds
76.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 pounds
28.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 pounds
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MPL 40x15x5x2[7/3.5] / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
3.41 kg / 7.51 pounds
3405.0 g / 33.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.27 kg / 5.00 pounds
2270.0 g / 22.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
1.14 kg / 2.50 pounds
1135.0 g / 11.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
5.68 kg / 12.51 pounds
5675.0 g / 55.7 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MPL 40x15x5x2[7/3.5] / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.57 kg / 1.25 pounds
567.5 g / 5.6 N
|
| 1 mm |
|
1.42 kg / 3.13 pounds
1418.8 g / 13.9 N
|
| 2 mm |
|
2.84 kg / 6.26 pounds
2837.5 g / 27.8 N
|
| 3 mm |
|
4.26 kg / 9.38 pounds
4256.3 g / 41.8 N
|
| 5 mm |
|
7.09 kg / 15.64 pounds
7093.8 g / 69.6 N
|
| 10 mm |
|
11.35 kg / 25.02 pounds
11350.0 g / 111.3 N
|
| 11 mm |
|
11.35 kg / 25.02 pounds
11350.0 g / 111.3 N
|
| 12 mm |
|
11.35 kg / 25.02 pounds
11350.0 g / 111.3 N
|
Table 5: Thermal resistance (stability) - power drop
MPL 40x15x5x2[7/3.5] / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.35 kg / 25.02 pounds
11350.0 g / 111.3 N
|
OK |
| 40 °C | -2.2% |
11.10 kg / 24.47 pounds
11100.3 g / 108.9 N
|
OK |
| 60 °C | -4.4% |
10.85 kg / 23.92 pounds
10850.6 g / 106.4 N
|
|
| 80 °C | -6.6% |
10.60 kg / 23.37 pounds
10600.9 g / 104.0 N
|
|
| 100 °C | -28.8% |
8.08 kg / 17.82 pounds
8081.2 g / 79.3 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field collision
MPL 40x15x5x2[7/3.5] / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
22.94 kg / 50.58 pounds
3 961 Gs
|
3.44 kg / 7.59 pounds
3441 g / 33.8 N
|
N/A |
| 1 mm |
21.37 kg / 47.11 pounds
4 807 Gs
|
3.21 kg / 7.07 pounds
3205 g / 31.4 N
|
19.23 kg / 42.40 pounds
~0 Gs
|
| 2 mm |
19.67 kg / 43.37 pounds
4 612 Gs
|
2.95 kg / 6.50 pounds
2951 g / 28.9 N
|
17.70 kg / 39.03 pounds
~0 Gs
|
| 3 mm |
17.94 kg / 39.55 pounds
4 404 Gs
|
2.69 kg / 5.93 pounds
2691 g / 26.4 N
|
16.15 kg / 35.59 pounds
~0 Gs
|
| 5 mm |
14.58 kg / 32.15 pounds
3 971 Gs
|
2.19 kg / 4.82 pounds
2187 g / 21.5 N
|
13.12 kg / 28.93 pounds
~0 Gs
|
| 10 mm |
8.01 kg / 17.67 pounds
2 944 Gs
|
1.20 kg / 2.65 pounds
1202 g / 11.8 N
|
7.21 kg / 15.90 pounds
~0 Gs
|
| 20 mm |
2.32 kg / 5.11 pounds
1 583 Gs
|
0.35 kg / 0.77 pounds
348 g / 3.4 N
|
2.09 kg / 4.60 pounds
~0 Gs
|
| 50 mm |
0.12 kg / 0.26 pounds
359 Gs
|
0.02 kg / 0.04 pounds
18 g / 0.2 N
|
0.11 kg / 0.24 pounds
~0 Gs
|
| 60 mm |
0.05 kg / 0.12 pounds
243 Gs
|
0.01 kg / 0.02 pounds
8 g / 0.1 N
|
0.05 kg / 0.11 pounds
~0 Gs
|
| 70 mm |
0.03 kg / 0.06 pounds
171 Gs
|
0.00 kg / 0.01 pounds
4 g / 0.0 N
|
0.02 kg / 0.05 pounds
~0 Gs
|
| 80 mm |
0.01 kg / 0.03 pounds
124 Gs
|
0.00 kg / 0.00 pounds
2 g / 0.0 N
|
0.01 kg / 0.03 pounds
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 pounds
92 Gs
|
0.00 kg / 0.00 pounds
1 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 pounds
70 Gs
|
0.00 kg / 0.00 pounds
1 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
Table 7: Hazards (electronics) - warnings
MPL 40x15x5x2[7/3.5] / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 10.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 8.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 6.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 5.0 cm |
| Remote | 50 Gs (5.0 mT) | 4.5 cm |
| Payment card | 400 Gs (40.0 mT) | 2.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MPL 40x15x5x2[7/3.5] / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
24.04 km/h
(6.68 m/s)
|
0.50 J | |
| 30 mm |
39.29 km/h
(10.91 m/s)
|
1.34 J | |
| 50 mm |
50.66 km/h
(14.07 m/s)
|
2.23 J | |
| 100 mm |
71.63 km/h
(19.90 m/s)
|
4.45 J |
Table 9: Corrosion resistance
MPL 40x15x5x2[7/3.5] / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MPL 40x15x5x2[7/3.5] / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 14 969 Mx | 149.7 µWb |
| Pc Coefficient | 0.26 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MPL 40x15x5x2[7/3.5] / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 11.35 kg | Standard |
| Water (riverbed) |
13.00 kg
(+1.65 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Warning: On a vertical surface, the magnet holds merely approx. 20-30% of its nominal pull.
2. Plate thickness effect
*Thin steel (e.g. 0.5mm PC case) severely weakens the holding force.
3. Thermal stability
*For N38 grade, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.26
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out more proposals
Advantages as well as disadvantages of Nd2Fe14B magnets.
Benefits
- They retain magnetic properties for almost ten years – the drop is just ~1% (based on simulations),
- They do not lose their magnetic properties even under strong external field,
- Thanks to the shiny finish, the surface of Ni-Cu-Ni, gold, or silver gives an modern appearance,
- Magnets have very high magnetic induction on the active area,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and are able to act (depending on the form) even at a temperature of 230°C or more...
- Possibility of accurate creating and adapting to complex needs,
- Versatile presence in electronics industry – they are utilized in magnetic memories, electromotive mechanisms, precision medical tools, and modern systems.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in compact dimensions, which allows their use in miniature devices
Disadvantages
- They are fragile upon too strong impacts. To avoid cracks, it is worth protecting magnets using a steel holder. Such protection not only protects the magnet but also increases its resistance to damage
- NdFeB magnets lose force when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of strength (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- They rust in a humid environment - during use outdoors we advise using waterproof magnets e.g. in rubber, plastic
- Limited ability of creating threads in the magnet and complex shapes - recommended is a housing - mounting mechanism.
- Potential hazard related to microscopic parts of magnets are risky, when accidentally swallowed, which is particularly important in the context of child safety. Furthermore, small components of these products are able to complicate diagnosis medical when they are in the body.
- High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which hinders application in large quantities
Holding force characteristics
Maximum lifting force for a neodymium magnet – what contributes to it?
- with the use of a yoke made of low-carbon steel, ensuring maximum field concentration
- with a cross-section of at least 10 mm
- with a plane perfectly flat
- with total lack of distance (without impurities)
- during detachment in a direction vertical to the plane
- at room temperature
Impact of factors on magnetic holding capacity in practice
- Distance (between the magnet and the plate), because even a microscopic distance (e.g. 0.5 mm) leads to a reduction in lifting capacity by up to 50% (this also applies to paint, rust or debris).
- Force direction – note that the magnet has greatest strength perpendicularly. Under shear forces, the holding force drops drastically, often to levels of 20-30% of the maximum value.
- Metal thickness – the thinner the sheet, the weaker the hold. Magnetic flux penetrates through instead of generating force.
- Material composition – not every steel reacts the same. Alloy additives weaken the interaction with the magnet.
- Surface structure – the smoother and more polished the surface, the larger the contact zone and stronger the hold. Roughness acts like micro-gaps.
- Temperature – temperature increase results in weakening of force. It is worth remembering the maximum operating temperature for a given model.
Lifting capacity was assessed by applying a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Additionally, even a small distance between the magnet’s surface and the plate reduces the lifting capacity.
Safety rules for work with NdFeB magnets
Health Danger
Individuals with a pacemaker have to maintain an large gap from magnets. The magnetic field can stop the operation of the implant.
Do not underestimate power
Before use, read the rules. Uncontrolled attraction can break the magnet or hurt your hand. Think ahead.
Pinching danger
Risk of injury: The attraction force is so great that it can result in hematomas, crushing, and broken bones. Protective gloves are recommended.
Electronic hazard
Very strong magnetic fields can erase data on credit cards, hard drives, and storage devices. Maintain a gap of min. 10 cm.
Do not give to children
These products are not suitable for play. Swallowing multiple magnets can lead to them pinching intestinal walls, which poses a severe health hazard and necessitates immediate surgery.
Nickel allergy
It is widely known that the nickel plating (the usual finish) is a common allergen. If you have an allergy, prevent direct skin contact and opt for encased magnets.
Combustion hazard
Combustion risk: Rare earth powder is explosive. Avoid machining magnets in home conditions as this risks ignition.
Power loss in heat
Regular neodymium magnets (N-type) lose magnetization when the temperature exceeds 80°C. This process is irreversible.
Impact on smartphones
Navigation devices and mobile phones are extremely susceptible to magnetism. Close proximity with a strong magnet can ruin the internal compass in your phone.
Magnet fragility
Despite metallic appearance, the material is brittle and cannot withstand shocks. Do not hit, as the magnet may crumble into sharp, dangerous pieces.
