MPL 50x20x5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020473
GTIN: 5906301811930
length [±0,1 mm]
50 mm
Width [±0,1 mm]
20 mm
Height [±0,1 mm]
5 mm
Weight
37.5 g
Magnetization Direction
↑ axial
Load capacity
12.49 kg / 122.49 N
Magnetic Induction
197.73 mT
Coating
[NiCuNi] nickel
14.56 ZŁ with VAT / pcs + price for transport
11.84 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Give us a call
+48 888 99 98 98
or send us a note through
request form
the contact page.
Weight along with shape of magnetic components can be checked using our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
MPL 50x20x5 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:
- They have unchanged lifting capacity, and over nearly 10 years their attraction force decreases symbolically – ~1% (in testing),
- They show superior resistance to demagnetization from outside magnetic sources,
- The use of a mirror-like gold surface provides a refined finish,
- The outer field strength of the magnet shows remarkable magnetic properties,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which broadens their usage potential,
- Wide application in advanced technical fields – they serve a purpose in data storage devices, electromechanical systems, medical equipment or even other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which allows for use in miniature devices
Disadvantages of neodymium magnets:
- They can break when subjected to a sudden impact. If the magnets are exposed to physical collisions, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time enhances its overall strength,
- They lose magnetic force at increased temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is not feasible,
- Possible threat linked to microscopic shards may arise, especially if swallowed, which is important in the family environments. Furthermore, small elements from these devices might complicate medical imaging once in the system,
- Due to a complex production process, their cost is considerably higher,
Maximum lifting capacity of the magnet – what it depends on?
The given holding capacity of the magnet means the highest holding force, measured in the best circumstances, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- in a perpendicular direction of force
- under standard ambient temperature
Lifting capacity in real conditions – factors
In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined using a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under parallel forces the holding force is lower. Additionally, even a small distance {between} the magnet and the plate decreases the load capacity.
Exercise Caution with Neodymium Magnets
Neodymium magnets are extremely delicate, they easily break and can become damaged.
Magnets made of neodymium are delicate and will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
If have a finger between or on the path of attracting magnets, there may be a large cut or a fracture.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
It is important to keep neodymium magnets out of reach from youngest children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Pay attention!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very powerful neodymium magnets?.
