MPL 50x20x5 / N38 - neodymium magnet
lamellar magnet
catalog number 020473
GTIN: 5906301811930
length
50
mm [±0,1 mm]
width
20
mm [±0,1 mm]
height
5
mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
12.49 kg / 122.49 N
magnetic induction ~
197.73 mT / 1,977 Gs
max. temperature
≤ 80
°C
catalog number 020473
GTIN: 5906301811930
length
50 mm [±0,1 mm]
width
20 mm [±0,1 mm]
height
5 mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
12.49 kg / 122.49 N
magnetic induction ~
197.73 mT / 1,977 Gs
max. temperature
≤ 80 °C
18.94 ZŁ gross price (including VAT) / pcs +
15.40 ZŁ net price + 23% VAT / pcs
bulk discounts:
need more quantity?Want to bargain?
Call us tel: +48 888 99 98 98 or get in touch through contact form on our website. You can check the strength as well as the shape of neodymium magnets in our force calculator power calculator
Orders placed by 2:00 PM will be shipped on the same business day.
Specification: lamellar magnet 50x20x5 / N38 ↑ axial
Magnetic properties of the material N38
Physical properties of sintered neodymium magnets Nd2Fe14B
Due to their strength, flat magnets are frequently used in products that require very strong attraction.
Typical temperature resistance of these magnets is 80 °C, but with larger dimensions, this value can increase.
In addition, flat magnets commonly have different coatings applied to their surfaces, such as nickel, gold, or chrome, to increase their strength.
The magnet labeled MPL 50x20x5 / N38 and a lifting capacity of 12.49 kg weighing only 37.50 grams, making it the perfect choice for projects needing a flat magnet.
Contact surface: Due to their flat shape, flat magnets ensure a larger contact surface with other components, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These magnets are often applied in various devices, e.g. sensors, stepper motors, or speakers, where the flat shape is necessary for their operation.
Mounting: The flat form's flat shape makes it easier mounting, especially when it is necessary to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets gives the possibility designers greater flexibility in placing them in structures, which is more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet may offer better stability, minimizing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet is dependent on the specific application and requirements. In certain cases, other shapes, like cylindrical or spherical, are a better choice.
Magnets have two main poles: north (N) and south (S), which interact with each other when they are different. Similar poles, such as two north poles, act repelling on each other.
Due to these properties, magnets are regularly used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them perfect for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its size and the material it is made of.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as compasses, credit cards and even electronic devices sensitive to magnetic fields. Therefore, it is important to exercise caution when using magnets.
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from immense power, neodymium magnets have the following advantages:
- They do not lose their strength (of the magnet). After about 10 years, their strength decreases by only ~1% (theoretically),
- They protect against demagnetization caused by external magnetic sources extremely well,
- By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
- They have very high magnetic induction on the surface of the magnet,
- By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
- Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
- Key role in advanced technologically fields – find application in computer drives, electric drive mechanisms, medical equipment and very modern machines.
Disadvantages of neodymium magnets:
- They are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
- Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
- Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
- Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
- Potential hazard to health from tiny fragments of magnets are risky, in case of ingestion, which is crucial in the context of children's health. It's also worth noting that miniscule components of these magnets have the potential to complicate diagnosis after entering the body.
Exercise Caution with Neodymium Magnets
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
In the situation of holding a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets can demagnetize at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets should not be in the vicinity youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Neodymium magnets are known for being fragile, which can cause them to shatter.
Neodymium magnetic are fragile as well as will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.