tel: +48 888 99 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our proposal. All magnesy neodymowe on our website are in stock for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnet for fishing F200 GOLD

Where to purchase powerful neodymium magnet? Magnetic holders in solid and airtight steel casing are perfect for use in challenging weather, including during rain and snow see...

magnetic holders

Holders with magnets can be applied to facilitate manufacturing, underwater discoveries, or finding space rocks made of metal see more...

Order is always shipped on the same day before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 50x20x5 / N38 - lamellar magnet

lamellar magnet

Catalog no 020473

GTIN: 5906301811930

5

length [±0,1 mm]

50 mm

Width [±0,1 mm]

20 mm

Height [±0,1 mm]

5 mm

Weight

37.5 g

Magnetization Direction

↑ axial

Load capacity

12.49 kg / 122.49 N

Magnetic Induction

197.73 mT

Coating

[NiCuNi] nickel

14.56 with VAT / pcs + price for transport

11.84 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
11.84 ZŁ
14.56 ZŁ
price from 60 pcs
11.13 ZŁ
13.69 ZŁ
price from 220 pcs
10.42 ZŁ
12.82 ZŁ

Want to negotiate?

Give us a call +48 22 499 98 98 if you prefer let us know through contact form the contact page.
Lifting power along with form of magnetic components can be verified on our modular calculator.

Orders placed before 14:00 will be shipped the same business day.

MPL 50x20x5 / N38 - lamellar magnet

Specification/characteristics MPL 50x20x5 / N38 - lamellar magnet
properties
values
Cat. no.
020473
GTIN
5906301811930
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
50 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
37.5 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
12.49 kg / 122.49 N
Magnetic Induction ~ ?
197.73 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets i.e. MPL 50x20x5 / N38 are magnets made from neodymium in a rectangular form. They are known for their extremely powerful magnetic properties, which surpass ordinary ferrite magnets.
Due to their strength, flat magnets are commonly used in products that require very strong attraction.
Most common temperature resistance of flat magnets is 80 °C, but depending on the dimensions, this value can increase.
In addition, flat magnets usually have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, to improve their durability.
The magnet with the designation MPL 50x20x5 / N38 i.e. a lifting capacity of 12.49 kg with a weight of only 37.5 grams, making it the excellent choice for projects needing a flat magnet.
Neodymium flat magnets provide a range of advantages versus other magnet shapes, which lead to them being a perfect solution for many applications:
Contact surface: Due to their flat shape, flat magnets ensure a greater contact surface with adjacent parts, which can be beneficial in applications requiring a stronger magnetic connection.
Technology applications: These are often applied in many devices, such as sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: This form's flat shape makes it easier mounting, particularly when it is required to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets permits designers greater flexibility in placing them in structures, which is more difficult with magnets of other shapes.
Stability: In some applications, the flat base of the flat magnet may provide better stability, reducing the risk of shifting or rotating. It’s important to keep in mind that the optimal shape of the magnet depends on the given use and requirements. In certain cases, other shapes, such as cylindrical or spherical, may be more appropriate.
Magnets attract objects made of ferromagnetic materials, such as iron elements, nickel, materials with cobalt and special alloys of ferromagnetic metals. Additionally, magnets may weaker affect some other metals, such as steel. Magnets are used in many fields.
Magnets work thanks to the properties of the magnetic field, which is generated by the movement of electric charges within their material. The magnetic field of magnets creates attractive interactions, which affect materials containing iron or other magnetic materials.

Magnets have two main poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Poles of the same kind, e.g. two north poles, repel each other.
Thanks to this principle of operation, magnets are regularly used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its size and the material it is made of.
Not all materials react to magnets, and examples of such substances are plastics, glass, wooden materials or precious stones. Additionally, magnets do not affect most metals, such as copper items, aluminum materials, items made of gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless exposed to a very strong magnetic field.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as compasses, magnetic stripe cards and even electronic devices sensitive to magnetic fields. For this reason, it is important to avoid placing magnets near such devices.
A flat magnet N50 and N52 is a strong and extremely powerful metal object with the shape of a plate, providing strong holding power and broad usability. Good price, 24h delivery, ruggedness and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • Their magnetic field is durable, and after around ten years, it drops only by ~1% (according to research),
  • They remain magnetized despite exposure to magnetic noise,
  • Because of the lustrous layer of nickel, the component looks visually appealing,
  • Magnetic induction on the surface of these magnets is very strong,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which expands their application range,
  • Important function in modern technologies – they are used in hard drives, electromechanical systems, diagnostic apparatus or even other advanced devices,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They can break when subjected to a heavy impact. If the magnets are exposed to shocks, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall resistance,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of plastic for outdoor use,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Safety concern from tiny pieces may arise, especially if swallowed, which is crucial in the health of young users. Furthermore, small elements from these assemblies may disrupt scanning if inside the body,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Detachment force of the magnet in optimal conditionswhat affects it?

The given holding capacity of the magnet corresponds to the highest holding force, measured under optimal conditions, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • at room temperature

What influences lifting capacity in practice

The lifting capacity of a magnet is influenced by in practice the following factors, according to their importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, however under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet and the plate lowers the holding force.

Precautions

Neodymium magnetic are highly fragile, they easily crack and can become damaged.

Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

 It is important to keep neodymium magnets out of reach from children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If the joining of neodymium magnets is not under control, at that time they may crumble and also crack. You can't move them to each other. At a distance less than 10 cm you should have them very firmly.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Safety rules!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98