e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnetic Nd2Fe14B - our offer. Practically all magnesy on our website are available for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnet for fishing F200 GOLD

Where to buy strong magnet? Magnetic holders in airtight, solid enclosure are ideally suited for use in difficult weather conditions, including snow and rain see more...

magnets with holders

Magnetic holders can be applied to improve production processes, exploring underwater areas, or searching for meteorites from gold more information...

Order always shipped if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 50x20x5 / N38 - lamellar magnet

lamellar magnet

Catalog no 020473

GTIN: 5906301811930

5

length [±0,1 mm]

50 mm

Width [±0,1 mm]

20 mm

Height [±0,1 mm]

5 mm

Weight

37.5 g

Magnetization Direction

↑ axial

Load capacity

12.49 kg / 122.49 N

Magnetic Induction

197.73 mT

Coating

[NiCuNi] nickel

14.56 with VAT / pcs + price for transport

11.84 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
11.84 ZŁ
14.56 ZŁ
price from 60 pcs
11.13 ZŁ
13.69 ZŁ
price from 220 pcs
10.42 ZŁ
12.82 ZŁ

Need advice?

Contact us by phone +48 22 499 98 98 or contact us through form the contact form page.
Strength along with shape of a neodymium magnet can be calculated using our our magnetic calculator.

Same-day shipping for orders placed before 14:00.

MPL 50x20x5 / N38 - lamellar magnet

Specification/characteristics MPL 50x20x5 / N38 - lamellar magnet
properties
values
Cat. no.
020473
GTIN
5906301811930
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
50 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
37.5 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
12.49 kg / 122.49 N
Magnetic Induction ~ ?
197.73 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets i.e. MPL 50x20x5 / N38 are magnets created from neodymium in a rectangular form. They are appreciated for their exceptionally potent magnetic properties, which outshine standard iron magnets.
Thanks to their mighty power, flat magnets are frequently applied in devices that need strong holding power.
Most common temperature resistance of these magnets is 80°C, but with larger dimensions, this value grows.
Moreover, flat magnets usually have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, to improve their strength.
The magnet named MPL 50x20x5 / N38 and a magnetic strength 12.49 kg which weighs a mere 37.5 grams, making it the excellent choice for applications requiring a flat shape.
Neodymium flat magnets provide a range of advantages versus other magnet shapes, which make them being an ideal choice for many applications:
Contact surface: Due to their flat shape, flat magnets guarantee a larger contact surface with adjacent parts, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: They are often applied in different devices, e.g. sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: This form's flat shape simplifies mounting, particularly when it is required to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows designers greater flexibility in placing them in devices, which can be more difficult with magnets of more complex shapes.
Stability: In some applications, the flat base of the flat magnet can offer better stability, reducing the risk of shifting or rotating. It’s important to keep in mind that the optimal shape of the magnet is dependent on the specific project and requirements. In certain cases, other shapes, such as cylindrical or spherical, may be a better choice.
How do magnets work? Magnets attract objects made of ferromagnetic materials, such as iron, nickel, cobalt or alloys of metals with magnetic properties. Moreover, magnets may weaker affect some other metals, such as steel. Magnets are used in many fields.
The operation of magnets is based on the properties of their magnetic field, which is generated by the movement of electric charges within their material. Magnetic fields of magnets creates attractive interactions, which affect materials containing iron or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which interact with each other when they are different. Similar poles, such as two north poles, act repelling on each other.
Due to these properties, magnets are often used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them indispensable for applications requiring strong magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the material it is made of.
Not all materials react to magnets, and examples of such substances are plastics, glass items, wood and most gemstones. Furthermore, magnets do not affect certain metals, such as copper items, aluminum materials, gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless exposed to a very strong magnetic field.
It’s worth noting that high temperatures can weaken the magnet's effect. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards and even electronic devices sensitive to magnetic fields. Therefore, it is important to exercise caution when using magnets.
A neodymium magnet of class N50 and N52 is a powerful and highly strong magnetic product with the shape of a plate, featuring strong holding power and broad usability. Good price, 24h delivery, stability and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They do not lose their power approximately 10 years – the reduction of power is only ~1% (according to tests),
  • Their ability to resist magnetic interference from external fields is among the best,
  • The use of a mirror-like gold surface provides a eye-catching finish,
  • They have exceptional magnetic induction on the surface of the magnet,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • With the option for customized forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Significant impact in modern technologies – they are utilized in HDDs, electric drives, healthcare devices and high-tech tools,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also increases its overall durability,
  • They lose field intensity at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to damp air can degrade. Therefore, for outdoor applications, we advise waterproof types made of rubber,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is not feasible,
  • Health risk due to small fragments may arise, when consumed by mistake, which is crucial in the protection of children. It should also be noted that tiny components from these products can interfere with diagnostics after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum magnetic pulling forcewhat affects it?

The given strength of the magnet corresponds to the optimal strength, determined under optimal conditions, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with zero air gap
  • under perpendicular detachment force
  • at room temperature

Determinants of lifting force in real conditions

The lifting capacity of a magnet is determined by in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under perpendicular forces, however under parallel forces the load capacity is reduced by as much as fivefold. Additionally, even a minimal clearance {between} the magnet’s surface and the plate lowers the holding force.

Safety Precautions

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Magnets will crack or crumble with uncontrolled connecting to each other. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Magnets made of neodymium are fragile as well as can easily break and get damaged.

Neodymium magnetic are delicate and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

 It is important to keep neodymium magnets away from children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Pay attention!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98