MPL 50x20x5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020473
GTIN: 5906301811930
length [±0,1 mm]
50 mm
Width [±0,1 mm]
20 mm
Height [±0,1 mm]
5 mm
Weight
37.5 g
Magnetization Direction
↑ axial
Load capacity
12.49 kg / 122.49 N
Magnetic Induction
197.73 mT
Coating
[NiCuNi] nickel
14.56 ZŁ with VAT / pcs + price for transport
11.84 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Call us now
+48 888 99 98 98
otherwise contact us using
request form
our website.
Lifting power and appearance of a magnet can be calculated using our
online calculation tool.
Same-day processing for orders placed before 14:00.
MPL 50x20x5 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their consistent magnetism, neodymium magnets have these key benefits:
- They retain their magnetic properties for around 10 years – the drop is just ~1% (based on simulations),
- They show exceptional resistance to demagnetization from external magnetic fields,
- In other words, due to the shiny gold coating, the magnet obtains an stylish appearance,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to profile),
- The ability for accurate shaping or adjustment to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
- Significant impact in cutting-edge sectors – they are used in hard drives, electromechanical systems, healthcare devices as well as other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of magnetic elements:
- They can break when subjected to a sudden impact. If the magnets are exposed to physical collisions, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and reinforces its overall resistance,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of rubber for outdoor use,
- Limited ability to create complex details in the magnet – the use of a mechanical support is recommended,
- Health risk linked to microscopic shards may arise, especially if swallowed, which is significant in the family environments. Additionally, miniature parts from these devices might interfere with diagnostics when ingested,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Maximum lifting force for a neodymium magnet – what contributes to it?
The given lifting capacity of the magnet means the maximum lifting force, calculated in ideal conditions, that is:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a smooth surface
- with no separation
- with vertical force applied
- under standard ambient temperature
Impact of factors on magnetic holding capacity in practice
In practice, the holding capacity of a magnet is conditioned by these factors, in descending order of importance:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under shearing force the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet and the plate reduces the holding force.
Safety Precautions
People with pacemakers are advised to avoid neodymium magnets.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Magnets made of neodymium are particularly delicate, resulting in damage.
Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
If joining of neodymium magnets is not controlled, at that time they may crumble and also crack. You can't approach them to each other. At a distance less than 10 cm you should hold them very strongly.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Keep neodymium magnets far from children.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Safety precautions!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
