MPL 50x20x5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020473
GTIN: 5906301811930
length [±0,1 mm]
50 mm
Width [±0,1 mm]
20 mm
Height [±0,1 mm]
5 mm
Weight
37.5 g
Magnetization Direction
↑ axial
Load capacity
12.49 kg / 122.49 N
Magnetic Induction
197.73 mT
Coating
[NiCuNi] nickel
14.56 ZŁ with VAT / pcs + price for transport
11.84 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Contact us by phone
+48 888 99 98 98
if you prefer let us know through
request form
the contact form page.
Parameters along with structure of neodymium magnets can be checked using our
our magnetic calculator.
Same-day processing for orders placed before 14:00.
MPL 50x20x5 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their durability, neodymium magnets are valued for these benefits:
- They retain their magnetic properties for nearly 10 years – the loss is just ~1% (in theory),
- They remain magnetized despite exposure to magnetic surroundings,
- By applying a bright layer of silver, the element gains a clean look,
- The outer field strength of the magnet shows advanced magnetic properties,
- Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- The ability for custom shaping as well as customization to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
- Important function in cutting-edge sectors – they are utilized in HDDs, electric motors, healthcare devices and high-tech tools,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of rare earth magnets:
- They are fragile when subjected to a heavy impact. If the magnets are exposed to shocks, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and enhances its overall robustness,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to moisture can degrade. Therefore, for outdoor applications, we suggest waterproof types made of plastic,
- Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
- Safety concern related to magnet particles may arise, if ingested accidentally, which is notable in the family environments. Additionally, tiny components from these devices have the potential to interfere with diagnostics if inside the body,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Highest magnetic holding force – what it depends on?
The given strength of the magnet corresponds to the optimal strength, calculated in the best circumstances, specifically:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a polished side
- with no separation
- with vertical force applied
- at room temperature
Lifting capacity in practice – influencing factors
The lifting capacity of a magnet depends on in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined with the use of a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the load capacity is reduced by as much as 75%. Additionally, even a minimal clearance {between} the magnet’s surface and the plate lowers the load capacity.
Caution with Neodymium Magnets
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Keep neodymium magnets far from youngest children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or in their path when they attract. Depending on how large the neodymium magnets are, they can lead to a cut or alternatively a fracture.
Keep neodymium magnets away from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets can become demagnetized at high temperatures.
Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnetic are highly susceptible to damage, resulting in their cracking.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
Exercise caution!
So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are very powerful neodymium magnets?.
