e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our store's offer. All "magnets" in our store are available for immediate purchase (see the list). Check out the magnet price list for more details check the magnet price list

Magnet for fishing F400 GOLD

Where to buy very strong magnet? Magnet holders in airtight and durable steel enclosure are ideally suited for use in difficult, demanding weather, including snow and rain more...

magnetic holders

Holders with magnets can be applied to facilitate manufacturing, underwater exploration, or finding space rocks made of ore see more...

Order always shipped on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 30x10x5 / N38 - lamellar magnet

lamellar magnet

Catalog no 020138

GTIN: 5906301811442

5

length [±0,1 mm]

30 mm

Width [±0,1 mm]

10 mm

Height [±0,1 mm]

5 mm

Weight

11.25 g

Magnetization Direction

↑ axial

Load capacity

6.84 kg / 67.08 N

Magnetic Induction

329.52 mT

Coating

[NiCuNi] nickel

4.26 with VAT / pcs + price for transport

3.46 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.46 ZŁ
4.26 ZŁ
price from 200 pcs
3.25 ZŁ
4.00 ZŁ
price from 750 pcs
3.04 ZŁ
3.74 ZŁ

Need help making a decision?

Call us now +48 22 499 98 98 alternatively let us know via inquiry form the contact section.
Weight as well as shape of a neodymium magnet can be verified with our power calculator.

Orders placed before 14:00 will be shipped the same business day.

MPL 30x10x5 / N38 - lamellar magnet

Specification/characteristics MPL 30x10x5 / N38 - lamellar magnet
properties
values
Cat. no.
020138
GTIN
5906301811442
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
30 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
11.25 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
6.84 kg / 67.08 N
Magnetic Induction ~ ?
329.52 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets min. MPL 30x10x5 / N38 are magnets created from neodymium in a rectangular form. They are known for their extremely powerful magnetic properties, which surpass traditional iron magnets.
Due to their power, flat magnets are frequently used in products that need exceptional adhesion.
Most common temperature resistance of these magnets is 80°C, but with larger dimensions, this value grows.
In addition, flat magnets often have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, for enhancing their corrosion resistance.
The magnet labeled MPL 30x10x5 / N38 and a magnetic force 6.84 kg with a weight of a mere 11.25 grams, making it the excellent choice for projects needing a flat magnet.
Neodymium flat magnets provide a range of advantages versus other magnet shapes, which lead to them being a perfect solution for many applications:
Contact surface: Thanks to their flat shape, flat magnets guarantee a larger contact surface with other components, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: They are often applied in different devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is crucial for their operation.
Mounting: This form's flat shape simplifies mounting, particularly when it is required to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets gives the possibility designers greater flexibility in placing them in devices, which can be more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet may offer better stability, reducing the risk of sliding or rotating. However, one should remember that the optimal shape of the magnet is dependent on the specific application and requirements. In certain cases, other shapes, such as cylindrical or spherical, may be more appropriate.
Magnets attract ferromagnetic materials, such as iron, nickel, materials with cobalt or alloys of metals with magnetic properties. Moreover, magnets may weaker affect alloys containing iron, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
The operation of magnets is based on the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. Magnetic fields of these objects creates attractive interactions, which attract objects made of cobalt or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which attract each other when they are oppositely oriented. Poles of the same kind, such as two north poles, repel each other.
Due to these properties, magnets are regularly used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them perfect for applications requiring strong magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the material it is made of.
Magnets do not attract plastic, glass, wood and most gemstones. Moreover, magnets do not affect most metals, such as copper items, aluminum materials, items made of gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless they are subjected to an extremely strong magnetic field.
It should be noted that high temperatures can weaken the magnet's effect. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards or electronic devices sensitive to magnetic fields. For this reason, it is important to avoid placing magnets near such devices.
A neodymium plate magnet N52 and N50 is a strong and powerful magnetic product with the shape of a plate, providing high force and broad usability. Very good price, fast shipping, resistance and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their immense magnetic power, neodymium magnets offer the following advantages:

  • They retain their attractive force for around 10 years – the loss is just ~1% (according to analyses),
  • They remain magnetized despite exposure to magnetic noise,
  • Thanks to the glossy finish and nickel coating, they have an aesthetic appearance,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
  • Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which expands their usage potential,
  • Important function in new technology industries – they serve a purpose in hard drives, electric drives, medical equipment as well as technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them useful in miniature devices

Disadvantages of neodymium magnets:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to physical collisions, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall durability,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a damp environment. For outdoor use, we recommend using encapsulated magnets, such as those made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing threads directly in the magnet,
  • Possible threat from tiny pieces may arise, when consumed by mistake, which is important in the protection of children. Furthermore, minuscule fragments from these products might complicate medical imaging after being swallowed,
  • Due to the price of neodymium, their cost is above average,

Detachment force of the magnet in optimal conditionswhat it depends on?

The given strength of the magnet corresponds to the optimal strength, calculated under optimal conditions, that is:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • under perpendicular detachment force
  • in normal thermal conditions

Impact of factors on magnetic holding capacity in practice

In practice, the holding capacity of a magnet is conditioned by the following aspects, in descending order of importance:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined by applying a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, in contrast under attempts to slide the magnet the holding force is lower. Additionally, even a minimal clearance {between} the magnet’s surface and the plate decreases the load capacity.

Notes with Neodymium Magnets

 Maintain neodymium magnets far from children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Magnets, depending on their size, can even cut off a finger or there can be a severe pressure or a fracture.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Magnets made of neodymium are highly susceptible to damage, leading to their cracking.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Be careful!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98