MPL 30x10x5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020138
GTIN/EAN: 5906301811442
length
30 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
11.25 g
Magnetization Direction
↑ axial
Load capacity
8.89 kg / 87.23 N
Magnetic Induction
329.52 mT / 3295 Gs
Coating
[NiCuNi] Nickel
4.26 ZŁ with VAT / pcs + price for transport
3.46 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 22 499 98 98
otherwise let us know through
our online form
through our site.
Force along with appearance of a neodymium magnet can be calculated on our
force calculator.
Orders placed before 14:00 will be shipped the same business day.
Product card - MPL 30x10x5 / N38 - lamellar magnet
Specification / characteristics - MPL 30x10x5 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020138 |
| GTIN/EAN | 5906301811442 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 30 mm [±0,1 mm] |
| Width | 10 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 11.25 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 8.89 kg / 87.23 N |
| Magnetic Induction ~ ? | 329.52 mT / 3295 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the magnet - report
The following values constitute the direct effect of a engineering calculation. Values rely on algorithms for the material Nd2Fe14B. Actual parameters may differ from theoretical values. Please consider these calculations as a reference point when designing systems.
Table 1: Static force (pull vs gap) - interaction chart
MPL 30x10x5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3294 Gs
329.4 mT
|
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
warning |
| 1 mm |
2866 Gs
286.6 mT
|
6.73 kg / 14.84 lbs
6731.1 g / 66.0 N
|
warning |
| 2 mm |
2424 Gs
242.4 mT
|
4.82 kg / 10.62 lbs
4816.4 g / 47.2 N
|
warning |
| 3 mm |
2022 Gs
202.2 mT
|
3.35 kg / 7.38 lbs
3349.6 g / 32.9 N
|
warning |
| 5 mm |
1397 Gs
139.7 mT
|
1.60 kg / 3.53 lbs
1600.3 g / 15.7 N
|
weak grip |
| 10 mm |
615 Gs
61.5 mT
|
0.31 kg / 0.68 lbs
309.8 g / 3.0 N
|
weak grip |
| 15 mm |
314 Gs
31.4 mT
|
0.08 kg / 0.18 lbs
80.6 g / 0.8 N
|
weak grip |
| 20 mm |
177 Gs
17.7 mT
|
0.03 kg / 0.06 lbs
25.8 g / 0.3 N
|
weak grip |
| 30 mm |
70 Gs
7.0 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
weak grip |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
weak grip |
Table 2: Vertical hold (wall)
MPL 30x10x5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.78 kg / 3.92 lbs
1778.0 g / 17.4 N
|
| 1 mm | Stal (~0.2) |
1.35 kg / 2.97 lbs
1346.0 g / 13.2 N
|
| 2 mm | Stal (~0.2) |
0.96 kg / 2.13 lbs
964.0 g / 9.5 N
|
| 3 mm | Stal (~0.2) |
0.67 kg / 1.48 lbs
670.0 g / 6.6 N
|
| 5 mm | Stal (~0.2) |
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 10 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
62.0 g / 0.6 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - vertical pull
MPL 30x10x5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
2.67 kg / 5.88 lbs
2667.0 g / 26.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.78 kg / 3.92 lbs
1778.0 g / 17.4 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.89 kg / 1.96 lbs
889.0 g / 8.7 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
4.45 kg / 9.80 lbs
4445.0 g / 43.6 N
|
Table 4: Steel thickness (substrate influence) - sheet metal selection
MPL 30x10x5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.89 kg / 1.96 lbs
889.0 g / 8.7 N
|
| 1 mm |
|
2.22 kg / 4.90 lbs
2222.5 g / 21.8 N
|
| 2 mm |
|
4.45 kg / 9.80 lbs
4445.0 g / 43.6 N
|
| 3 mm |
|
6.67 kg / 14.70 lbs
6667.5 g / 65.4 N
|
| 5 mm |
|
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
| 10 mm |
|
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
| 11 mm |
|
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
| 12 mm |
|
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
Table 5: Working in heat (stability) - power drop
MPL 30x10x5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
OK |
| 40 °C | -2.2% |
8.69 kg / 19.17 lbs
8694.4 g / 85.3 N
|
OK |
| 60 °C | -4.4% |
8.50 kg / 18.74 lbs
8498.8 g / 83.4 N
|
|
| 80 °C | -6.6% |
8.30 kg / 18.31 lbs
8303.3 g / 81.5 N
|
|
| 100 °C | -28.8% |
6.33 kg / 13.95 lbs
6329.7 g / 62.1 N
|
Table 6: Two magnets (repulsion) - field collision
MPL 30x10x5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
20.06 kg / 44.23 lbs
4 689 Gs
|
3.01 kg / 6.63 lbs
3010 g / 29.5 N
|
N/A |
| 1 mm |
17.63 kg / 38.86 lbs
6 174 Gs
|
2.64 kg / 5.83 lbs
2644 g / 25.9 N
|
15.86 kg / 34.98 lbs
~0 Gs
|
| 2 mm |
15.19 kg / 33.49 lbs
5 732 Gs
|
2.28 kg / 5.02 lbs
2279 g / 22.4 N
|
13.67 kg / 30.14 lbs
~0 Gs
|
| 3 mm |
12.92 kg / 28.47 lbs
5 285 Gs
|
1.94 kg / 4.27 lbs
1937 g / 19.0 N
|
11.62 kg / 25.63 lbs
~0 Gs
|
| 5 mm |
9.08 kg / 20.03 lbs
4 432 Gs
|
1.36 kg / 3.00 lbs
1363 g / 13.4 N
|
8.18 kg / 18.02 lbs
~0 Gs
|
| 10 mm |
3.61 kg / 7.96 lbs
2 795 Gs
|
0.54 kg / 1.19 lbs
542 g / 5.3 N
|
3.25 kg / 7.17 lbs
~0 Gs
|
| 20 mm |
0.70 kg / 1.54 lbs
1 230 Gs
|
0.10 kg / 0.23 lbs
105 g / 1.0 N
|
0.63 kg / 1.39 lbs
~0 Gs
|
| 50 mm |
0.02 kg / 0.05 lbs
217 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.02 lbs
141 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
96 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
68 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
50 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (electronics) - warnings
MPL 30x10x5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 8.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 6.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 5.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 4.0 cm |
| Car key | 50 Gs (5.0 mT) | 3.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Impact energy (cracking risk) - warning
MPL 30x10x5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
28.96 km/h
(8.04 m/s)
|
0.36 J | |
| 30 mm |
49.12 km/h
(13.64 m/s)
|
1.05 J | |
| 50 mm |
63.39 km/h
(17.61 m/s)
|
1.74 J | |
| 100 mm |
89.65 km/h
(24.90 m/s)
|
3.49 J |
Table 9: Corrosion resistance
MPL 30x10x5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MPL 30x10x5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 9 370 Mx | 93.7 µWb |
| Pc Coefficient | 0.35 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MPL 30x10x5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 8.89 kg | Standard |
| Water (riverbed) |
10.18 kg
(+1.29 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical wall, the magnet holds only approx. 20-30% of its perpendicular strength.
2. Steel saturation
*Thin steel (e.g. 0.5mm PC case) severely weakens the holding force.
3. Heat tolerance
*For standard magnets, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.35
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out also proposals
Advantages as well as disadvantages of Nd2Fe14B magnets.
Pros
- They virtually do not lose power, because even after 10 years the decline in efficiency is only ~1% (based on calculations),
- Neodymium magnets are characterized by extremely resistant to demagnetization caused by magnetic disturbances,
- The use of an metallic coating of noble metals (nickel, gold, silver) causes the element to have aesthetics,
- Magnetic induction on the surface of the magnet is very high,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the form) even at high temperatures reaching 230°C or more...
- Thanks to the potential of flexible molding and customization to specialized projects, NdFeB magnets can be produced in a wide range of shapes and sizes, which increases their versatility,
- Key role in high-tech industry – they are used in hard drives, drive modules, precision medical tools, as well as modern systems.
- Thanks to concentrated force, small magnets offer high operating force, with minimal size,
Cons
- At very strong impacts they can crack, therefore we recommend placing them in steel cases. A metal housing provides additional protection against damage and increases the magnet's durability.
- We warn that neodymium magnets can lose their power at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
- Magnets exposed to a humid environment can rust. Therefore while using outdoors, we recommend using water-impermeable magnets made of rubber, plastic or other material resistant to moisture
- Due to limitations in realizing nuts and complex shapes in magnets, we recommend using a housing - magnetic holder.
- Possible danger to health – tiny shards of magnets pose a threat, if swallowed, which is particularly important in the context of child safety. Furthermore, small elements of these products are able to disrupt the diagnostic process medical in case of swallowing.
- High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which increases costs of application in large quantities
Pull force analysis
Breakaway strength of the magnet in ideal conditions – what contributes to it?
- using a sheet made of high-permeability steel, acting as a circuit closing element
- possessing a massiveness of at least 10 mm to ensure full flux closure
- with an ideally smooth touching surface
- with total lack of distance (without impurities)
- for force acting at a right angle (in the magnet axis)
- at room temperature
Magnet lifting force in use – key factors
- Distance – existence of any layer (paint, dirt, gap) acts as an insulator, which reduces power steeply (even by 50% at 0.5 mm).
- Force direction – declared lifting capacity refers to pulling vertically. When slipping, the magnet exhibits much less (typically approx. 20-30% of maximum force).
- Plate thickness – too thin plate causes magnetic saturation, causing part of the flux to be escaped into the air.
- Steel grade – ideal substrate is high-permeability steel. Stainless steels may have worse magnetic properties.
- Surface condition – smooth surfaces guarantee perfect abutment, which increases field saturation. Uneven metal reduce efficiency.
- Temperature – temperature increase results in weakening of induction. It is worth remembering the thermal limit for a given model.
Lifting capacity was determined by applying a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, in contrast under parallel forces the holding force is lower. Additionally, even a slight gap between the magnet’s surface and the plate reduces the lifting capacity.
Safety rules for work with neodymium magnets
Warning for allergy sufferers
Allergy Notice: The nickel-copper-nickel coating consists of nickel. If an allergic reaction happens, cease handling magnets and wear gloves.
Permanent damage
Watch the temperature. Heating the magnet above 80 degrees Celsius will permanently weaken its properties and pulling force.
Keep away from electronics
Note: rare earth magnets generate a field that interferes with precision electronics. Maintain a separation from your phone, tablet, and navigation systems.
Fire warning
Drilling and cutting of neodymium magnets poses a fire risk. Magnetic powder reacts violently with oxygen and is difficult to extinguish.
Threat to electronics
Avoid bringing magnets close to a wallet, computer, or screen. The magnetism can permanently damage these devices and erase data from cards.
Handling rules
Before use, check safety instructions. Sudden snapping can destroy the magnet or injure your hand. Think ahead.
Danger to pacemakers
Warning for patients: Powerful magnets affect electronics. Keep minimum 30 cm distance or request help to work with the magnets.
Choking Hazard
Only for adults. Small elements pose a choking risk, causing serious injuries. Store away from children and animals.
Crushing risk
Watch your fingers. Two large magnets will join immediately with a force of several hundred kilograms, destroying anything in their path. Be careful!
Protective goggles
Beware of splinters. Magnets can explode upon violent connection, ejecting shards into the air. Wear goggles.
