SM 32x475 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130466
GTIN: 5906301813378
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
475 mm
Weight
2630 g
1488.30 ZŁ with VAT / pcs + price for transport
1210.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Give us a call
+48 888 99 98 98
or send us a note via
form
our website.
Force as well as structure of neodymium magnets can be verified on our
online calculation tool.
Orders placed before 14:00 will be shipped the same business day.
SM 32x475 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their immense strength, neodymium magnets offer the following advantages:
- Their magnetic field is durable, and after around 10 years, it drops only by ~1% (according to research),
- They show exceptional resistance to demagnetization from external magnetic fields,
- In other words, due to the shiny gold coating, the magnet obtains an professional appearance,
- The outer field strength of the magnet shows advanced magnetic properties,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- With the option for fine forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
- Important function in new technology industries – they find application in hard drives, rotating machines, healthcare devices along with high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which makes them useful in miniature devices
Disadvantages of magnetic elements:
- They are fragile when subjected to a strong impact. If the magnets are exposed to physical collisions, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and strengthens its overall strength,
- They lose strength at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a damp environment – during outdoor use, we recommend using sealed magnets, such as those made of non-metallic materials,
- Limited ability to create internal holes in the magnet – the use of a external casing is recommended,
- Safety concern from tiny pieces may arise, especially if swallowed, which is notable in the family environments. It should also be noted that minuscule fragments from these assemblies have the potential to hinder health screening if inside the body,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Maximum lifting capacity of the magnet – what contributes to it?
The given strength of the magnet corresponds to the optimal strength, assessed in the best circumstances, specifically:
- with the use of low-carbon steel plate acting as a magnetic yoke
- of a thickness of at least 10 mm
- with a smooth surface
- with zero air gap
- under perpendicular detachment force
- at room temperature
Practical aspects of lifting capacity – factors
In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under parallel forces the load capacity is reduced by as much as 5 times. In addition, even a minimal clearance {between} the magnet and the plate reduces the load capacity.
Caution with Neodymium Magnets
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.
Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Magnets are not toys, youngest should not play with them.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Neodymium magnets are especially fragile, which leads to shattering.
Neodymium magnetic are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can become demagnetized at high temperatures.
Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
If the joining of neodymium magnets is not under control, then they may crumble and crack. You can't approach them to each other. At a distance less than 10 cm you should have them very firmly.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Pay attention!
To illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are powerful neodymium magnets?.
