e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. All "neodymium magnets" on our website are in stock for immediate delivery (check the list). Check out the magnet price list for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to purchase powerful magnet? Holders with magnets in solid and airtight enclosure are ideally suited for use in difficult climate conditions, including in the rain and snow more information...

magnets with holders

Holders with magnets can be applied to improve production processes, exploring underwater areas, or locating space rocks from gold check...

Enjoy shipping of your order on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

SM 32x475 [2xM8] / N52 - magnetic roller

magnetic separator

catalog number 130466

GTIN: 5906301813378

no reviews

diameter Ø

32 mm [±0,1 mm]

height

475 mm [±0,1 mm]

max. temperature

≤ 80 °C

1488.30 PLN gross price (including VAT) / pcs +

1210.00 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
1210.00 PLN
1488.30 PLN
price from 2 pcs
1149.50 PLN
1413.88 PLN
price from 4 pcs
1089.00 PLN
1339.47 PLN

Want to talk about magnets?

Give us a call tel: +48 888 99 98 98 or get in touch through contact form on the contact page. You can check the mass and the shape of neodymium magnets in our magnetic calculator magnetic mass calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: magnetic separator 32x475 [2xM8] / N52

Characteristics: magnetic separator 32x475 [2xM8] / N52
Properties
Values
catalog number
130466
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
32 mm [±0,1 mm]
height
475 mm [±0,1 mm]
max. temperature ?
≤ 80 °C
weight
2630.00 g
execution tolerance
± 0.1 mm
rodzaj materiału
AISI 304 - bezpieczna dla żywności
rodzaj magnesów
NdFeB N52
ilość gwintów
2x [M8] wewnętrzne
biegunowość
obwodowa - 18 nadbiegunników
indukcja magnetyczna
~ 10 000 Gauss [±5%]
max. temp. pracy
poniżej ≤ 80°C
grubość rury osłonowej
1 mm

Magnetic properties of the material N52

material characteristics N52
Properties
Values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
48-53
BH max MGOe
energy density [Min. - Max.]
380-422
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are welded in a construction made of stainless steel usually AISI304. In this way, it is possible to precisely segregate ferromagnetic elements from the mixture. A fundamental component of its operation is the repulsion of magnetic poles N and S, which allows magnetic substances to be attracted. The thickness of the magnet and its structure pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to separate ferromagnetic particles. If the cans are made of ferromagnetic materials, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are used in the food sector to clear metallic contaminants, including iron fragments or iron dust. Our rods are constructed from acid-resistant steel, EN 1.4301, suitable for use in food.
Magnetic rollers, otherwise cylindrical magnets, are used in metal separation, food production as well as waste processing. They help in extracting iron dust during the process of separating metals from other wastes.
Our magnetic rollers are built with neodymium magnets anchored in a stainless steel tube cylinder of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded openings, allowing for quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the stronger the magnet, the more efficient it is. Nevertheless, the value of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines will be short. On the other hand, in the case of a thicker magnet, the force lines will be longer and reach further.
For constructing the casings of magnetic separators - rollers, usually stainless steel is utilized, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, AISI 316 steel exhibits the best resistance thanks to its exceptional anti-corrosion properties.
Magnetic rollers stand out for their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, in contrast to other separators that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The result is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve the need for regular cleaning, higher cost, and potential installation challenges.
For proper maintenance of neodymium magnetic rollers, it is advised {to clean them regularly from deposits, avoid extremal temperatures above 80 degrees, and cleaning after each use, avoiding temperatures up to 80°C. The rollers have an IP67 waterproof rating, so if they are not sealed, the magnets inside may rust and weaken. Roller inspections are recommended to be conducted every two years. Caution should be exercised during use as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it can be worn down, which, in turn, may lead to issues with the magnetic rod becoming unsealed and product contamination. The Roller operating range equals its diameter, fi25mm is approximately 25mm active range, while fi32 is about 40mm.

Find suggested articles

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose power over time. After about 10 years, their strength decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Key role in the industry of new technologies – find application in HDD drives, electric motors, medical equipment or very modern machines.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, it is suggested using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Health risk associated with microscopic parts of magnets are risky, in case of ingestion, which is particularly important in the aspect of protecting young children. Additionally, miniscule components of these products have the potential to be problematic in medical diagnosis in case of swallowing.

Safety Precautions

  Do not give neodymium magnets to youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

In the case of holding a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnetic are extremely fragile, resulting in breaking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98