e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. All "neodymium magnets" in our store are in stock for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnets for fishing F400 GOLD

Where to buy powerful magnet? Magnetic holders in airtight and durable steel enclosure are excellent for use in difficult, demanding climate conditions, including during rain and snow read...

magnetic holders

Magnetic holders can be applied to facilitate production, underwater discoveries, or finding meteorites from gold read...

We promise to ship ordered magnets if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 15x2 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010028

GTIN: 5906301810278

5

Diameter Ø [±0,1 mm]

15 mm

Height [±0,1 mm]

2 mm

Weight

2.65 g

Magnetization Direction

↑ axial

Load capacity

1.66 kg / 16.28 N

Magnetic Induction

159.70 mT

Coating

[NiCuNi] nickel

1.13 with VAT / pcs + price for transport

0.92 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.92 ZŁ
1.13 ZŁ
price from 653 pcs
0.86 ZŁ
1.06 ZŁ
price from 2718 pcs
0.81 ZŁ
1.00 ZŁ

Looking for a better price?

Call us now +48 888 99 98 98 otherwise send us a note through request form the contact page.
Parameters and structure of magnetic components can be calculated using our magnetic mass calculator.

Same-day shipping for orders placed before 14:00.

MW 15x2 / N38 - cylindrical magnet

Specification/characteristics MW 15x2 / N38 - cylindrical magnet
properties
values
Cat. no.
010028
GTIN
5906301810278
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
15 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
2.65 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.66 kg / 16.28 N
Magnetic Induction ~ ?
159.70 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 15x2 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which outperform traditional ferrite magnets. Thanks to their strength, they are frequently used in products that need powerful holding. The standard temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their resistance to corrosion. The cylindrical shape is as well one of the most popular among neodymium magnets. The magnet with the designation MW 15x2 / N38 and a magnetic force 1.66 kg weighs only 2.65 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of silver to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth check the website for the current information and offers, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are practical in many applications, they can also constitute certain dangers. Due to their significant magnetic power, they can pull metallic objects with great force, which can lead to damaging skin as well as other surfaces, especially hands. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are currently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with other metals and then forming and thermal processing. Their amazing magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as epoxy, to preserve them from external factors and extend their lifespan. High temperatures exceeding 130°C can result in a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
A cylindrical neodymium magnet of class N50 and N52 is a powerful and strong magnetic piece in the form of a cylinder, that offers high force and universal application. Good price, availability, stability and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They do not lose their power around 10 years – the loss of strength is only ~1% (based on measurements),
  • Their ability to resist magnetic interference from external fields is notable,
  • By applying a bright layer of nickel, the element gains a sleek look,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for customized forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Wide application in cutting-edge sectors – they are utilized in HDDs, rotating machines, diagnostic apparatus or even technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which makes them useful in small systems

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to external force, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally enhances its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of rubber for outdoor use,
  • Limited ability to create complex details in the magnet – the use of a housing is recommended,
  • Possible threat from tiny pieces may arise, especially if swallowed, which is important in the family environments. Furthermore, miniature parts from these devices might disrupt scanning once in the system,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Exercise Caution with Neodymium Magnets

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 Keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets may crack or alternatively crumble with careless joining to each other. You can't move them to each other. At a distance less than 10 cm you should hold them extremely strongly.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Magnets made of neodymium are highly fragile, they easily break and can become damaged.

Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Exercise caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98