Neodymium magnets: strength you're looking for

Looking for massive power in small size? We offer rich assortment of disc, cylindrical and ring magnets. They are ideal for home use, workshop and industrial tasks. See products with fast shipping.

discover magnet catalog

Magnet fishing: strong F200/F400 sets

Discover your passion with treasure salvaging! Our specialized grips (F200, F400) provide grip certainty and immense power. Solid, corrosion-resistant housing and strong lines will perform in challenging water conditions.

choose your water magnet

Magnetic mounting systems

Reliable solutions for fixing without drilling. Threaded grips (M8, M10, M12) provide quick improvement of work on warehouses. They are indispensable installing lighting, sensors and ads.

see industrial applications

🚀 Lightning processing: orders by 14:00 shipped immediately!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MW 15x2 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010028

GTIN/EAN: 5906301810278

5.00

Diameter Ø

15 mm [±0,1 mm]

Height

2 mm [±0,1 mm]

Weight

2.65 g

Magnetization Direction

↑ axial

Load capacity

1.51 kg / 14.84 N

Magnetic Induction

159.70 mT / 1597 Gs

Coating

[NiCuNi] Nickel

1.218 with VAT / pcs + price for transport

0.990 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.990 ZŁ
1.218 ZŁ
price from 700 pcs
0.931 ZŁ
1.145 ZŁ
price from 2600 pcs
0.871 ZŁ
1.072 ZŁ
Need help making a decision?

Call us now +48 888 99 98 98 if you prefer let us know via inquiry form the contact section.
Parameters as well as appearance of a magnet can be checked on our power calculator.

Orders placed before 14:00 will be shipped the same business day.

Product card - MW 15x2 / N38 - cylindrical magnet

Specification / characteristics - MW 15x2 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010028
GTIN/EAN 5906301810278
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 15 mm [±0,1 mm]
Height 2 mm [±0,1 mm]
Weight 2.65 g
Magnetization Direction ↑ axial
Load capacity ~ ? 1.51 kg / 14.84 N
Magnetic Induction ~ ? 159.70 mT / 1597 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 15x2 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Engineering modeling of the assembly - technical parameters

The following values are the outcome of a engineering calculation. Results are based on algorithms for the material Nd2Fe14B. Actual parameters may deviate from the simulation results. Please consider these data as a reference point when designing systems.

Table 1: Static pull force (pull vs distance) - characteristics
MW 15x2 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 1597 Gs
159.7 mT
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
weak grip
1 mm 1483 Gs
148.3 mT
1.30 kg / 2.87 lbs
1303.0 g / 12.8 N
weak grip
2 mm 1320 Gs
132.0 mT
1.03 kg / 2.28 lbs
1032.2 g / 10.1 N
weak grip
3 mm 1137 Gs
113.7 mT
0.77 kg / 1.69 lbs
765.0 g / 7.5 N
weak grip
5 mm 791 Gs
79.1 mT
0.37 kg / 0.82 lbs
370.8 g / 3.6 N
weak grip
10 mm 298 Gs
29.8 mT
0.05 kg / 0.12 lbs
52.5 g / 0.5 N
weak grip
15 mm 127 Gs
12.7 mT
0.01 kg / 0.02 lbs
9.6 g / 0.1 N
weak grip
20 mm 63 Gs
6.3 mT
0.00 kg / 0.01 lbs
2.4 g / 0.0 N
weak grip
30 mm 22 Gs
2.2 mT
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
weak grip
50 mm 5 Gs
0.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
weak grip

Table 2: Vertical hold (wall)
MW 15x2 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.30 kg / 0.67 lbs
302.0 g / 3.0 N
1 mm Stal (~0.2) 0.26 kg / 0.57 lbs
260.0 g / 2.6 N
2 mm Stal (~0.2) 0.21 kg / 0.45 lbs
206.0 g / 2.0 N
3 mm Stal (~0.2) 0.15 kg / 0.34 lbs
154.0 g / 1.5 N
5 mm Stal (~0.2) 0.07 kg / 0.16 lbs
74.0 g / 0.7 N
10 mm Stal (~0.2) 0.01 kg / 0.02 lbs
10.0 g / 0.1 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MW 15x2 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.45 kg / 1.00 lbs
453.0 g / 4.4 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.30 kg / 0.67 lbs
302.0 g / 3.0 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.15 kg / 0.33 lbs
151.0 g / 1.5 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.76 kg / 1.66 lbs
755.0 g / 7.4 N

Table 4: Steel thickness (substrate influence) - power losses
MW 15x2 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.15 kg / 0.33 lbs
151.0 g / 1.5 N
1 mm
25%
0.38 kg / 0.83 lbs
377.5 g / 3.7 N
2 mm
50%
0.76 kg / 1.66 lbs
755.0 g / 7.4 N
3 mm
75%
1.13 kg / 2.50 lbs
1132.5 g / 11.1 N
5 mm
100%
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
10 mm
100%
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
11 mm
100%
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
12 mm
100%
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N

Table 5: Working in heat (material behavior) - thermal limit
MW 15x2 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
OK
40 °C -2.2% 1.48 kg / 3.26 lbs
1476.8 g / 14.5 N
OK
60 °C -4.4% 1.44 kg / 3.18 lbs
1443.6 g / 14.2 N
80 °C -6.6% 1.41 kg / 3.11 lbs
1410.3 g / 13.8 N
100 °C -28.8% 1.08 kg / 2.37 lbs
1075.1 g / 10.5 N

Table 6: Two magnets (repulsion) - forces in the system
MW 15x2 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Shear Strength (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 2.78 kg / 6.12 lbs
2 915 Gs
0.42 kg / 0.92 lbs
417 g / 4.1 N
N/A
1 mm 2.61 kg / 5.76 lbs
3 096 Gs
0.39 kg / 0.86 lbs
392 g / 3.8 N
2.35 kg / 5.18 lbs
~0 Gs
2 mm 2.40 kg / 5.28 lbs
2 966 Gs
0.36 kg / 0.79 lbs
360 g / 3.5 N
2.16 kg / 4.76 lbs
~0 Gs
3 mm 2.15 kg / 4.75 lbs
2 812 Gs
0.32 kg / 0.71 lbs
323 g / 3.2 N
1.94 kg / 4.27 lbs
~0 Gs
5 mm 1.65 kg / 3.63 lbs
2 459 Gs
0.25 kg / 0.54 lbs
247 g / 2.4 N
1.48 kg / 3.27 lbs
~0 Gs
10 mm 0.68 kg / 1.50 lbs
1 582 Gs
0.10 kg / 0.23 lbs
102 g / 1.0 N
0.61 kg / 1.35 lbs
~0 Gs
20 mm 0.10 kg / 0.21 lbs
595 Gs
0.01 kg / 0.03 lbs
14 g / 0.1 N
0.09 kg / 0.19 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
71 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
43 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
28 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
19 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
14 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
10 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Protective zones (implants) - precautionary measures
MW 15x2 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 5.5 cm
Hearing aid 10 Gs (1.0 mT) 4.0 cm
Mechanical watch 20 Gs (2.0 mT) 3.5 cm
Mobile device 40 Gs (4.0 mT) 2.5 cm
Car key 50 Gs (5.0 mT) 2.5 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 1.0 cm

Table 8: Dynamics (cracking risk) - warning
MW 15x2 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 24.59 km/h
(6.83 m/s)
0.06 J
30 mm 41.70 km/h
(11.58 m/s)
0.18 J
50 mm 53.83 km/h
(14.95 m/s)
0.30 J
100 mm 76.13 km/h
(21.15 m/s)
0.59 J

Table 9: Anti-corrosion coating durability
MW 15x2 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Flux)
MW 15x2 / N38

Parameter Value SI Unit / Description
Magnetic Flux 3 541 Mx 35.4 µWb
Pc Coefficient 0.20 Low (Flat)

Table 11: Submerged application
MW 15x2 / N38

Environment Effective steel pull Effect
Air (land) 1.51 kg Standard
Water (riverbed) 1.73 kg
(+0.22 kg buoyancy gain)
+14.5%
Corrosion warning: Remember to wipe the magnet thoroughly after removing it from water and apply a protective layer (e.g., oil) to avoid corrosion.
1. Sliding resistance

*Note: On a vertical wall, the magnet retains just ~20% of its nominal pull.

2. Steel saturation

*Thin steel (e.g. computer case) severely reduces the holding force.

3. Temperature resistance

*For standard magnets, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.20

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical specification and ecology
Elemental analysis
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010028-2026
Magnet Unit Converter
Force (pull)

Magnetic Induction

Other deals

The offered product is a very strong cylindrical magnet, composed of modern NdFeB material, which, at dimensions of Ø15x2 mm, guarantees optimal power. The MW 15x2 / N38 model boasts high dimensional repeatability and professional build quality, making it an ideal solution for the most demanding engineers and designers. As a magnetic rod with impressive force (approx. 1.51 kg), this product is available off-the-shelf from our European logistics center, ensuring quick order fulfillment. Additionally, its Ni-Cu-Ni coating shields it against corrosion in standard operating conditions, guaranteeing an aesthetic appearance and durability for years.
This model is created for building generators, advanced Hall effect sensors, and efficient filters, where field concentration on a small surface counts. Thanks to the high power of 14.84 N with a weight of only 2.65 g, this cylindrical magnet is indispensable in electronics and wherever low weight is crucial.
Due to the brittleness of the NdFeB material, you must not use force-fitting (so-called press-fit), as this risks chipping the coating of this precision component. To ensure stability in automation, anaerobic resins are used, which do not react with the nickel coating and fill the gap, guaranteeing high repeatability of the connection.
Grade N38 is the most popular standard for professional neodymium magnets, offering a great economic balance and operational stability. If you need the strongest magnets in the same volume (Ø15x2), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard available off-the-shelf in our store.
This model is characterized by dimensions Ø15x2 mm, which, at a weight of 2.65 g, makes it an element with impressive magnetic energy density. The value of 14.84 N means that the magnet is capable of holding a weight many times exceeding its own mass of 2.65 g. The product has a [NiCuNi] coating, which protects the surface against oxidation, giving it an aesthetic, silvery shine.
This cylinder is magnetized axially (along the height of 2 mm), which means that the N and S poles are located on the flat, circular surfaces. Such an arrangement is standard when connecting magnets in stacks (e.g., in filters) or when mounting in sockets at the bottom of a hole. On request, we can also produce versions magnetized diametrically if your project requires it.

Pros and cons of rare earth magnets.

Advantages

Besides their tremendous pulling force, neodymium magnets offer the following advantages:
  • They virtually do not lose power, because even after 10 years the decline in efficiency is only ~1% (according to literature),
  • They possess excellent resistance to weakening of magnetic properties when exposed to external fields,
  • A magnet with a smooth gold surface looks better,
  • The surface of neodymium magnets generates a strong magnetic field – this is a key feature,
  • Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
  • Possibility of custom machining as well as modifying to atypical requirements,
  • Fundamental importance in future technologies – they serve a role in computer drives, electromotive mechanisms, advanced medical instruments, and modern systems.
  • Thanks to efficiency per cm³, small magnets offer high operating force, occupying minimum space,

Limitations

Disadvantages of neodymium magnets:
  • They are fragile upon heavy impacts. To avoid cracks, it is worth securing magnets in a protective case. Such protection not only shields the magnet but also increases its resistance to damage
  • When exposed to high temperature, neodymium magnets experience a drop in power. Often, when the temperature exceeds 80°C, their power decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
  • Due to the susceptibility of magnets to corrosion in a humid environment, we advise using waterproof magnets made of rubber, plastic or other material stable to moisture, in case of application outdoors
  • We recommend cover - magnetic mount, due to difficulties in producing nuts inside the magnet and complex forms.
  • Possible danger to health – tiny shards of magnets pose a threat, if swallowed, which gains importance in the context of child safety. Furthermore, tiny parts of these magnets can complicate diagnosis medical in case of swallowing.
  • High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which can limit application in large quantities

Holding force characteristics

Maximum holding power of the magnet – what affects it?

The force parameter is a result of laboratory testing performed under specific, ideal conditions:
  • using a sheet made of mild steel, functioning as a circuit closing element
  • whose transverse dimension is min. 10 mm
  • with a surface perfectly flat
  • with direct contact (without impurities)
  • for force acting at a right angle (pull-off, not shear)
  • at conditions approx. 20°C

Impact of factors on magnetic holding capacity in practice

In practice, the actual lifting capacity results from a number of factors, presented from crucial:
  • Clearance – existence of any layer (rust, tape, gap) acts as an insulator, which reduces power steeply (even by 50% at 0.5 mm).
  • Angle of force application – maximum parameter is available only during pulling at a 90° angle. The force required to slide of the magnet along the surface is usually many times lower (approx. 1/5 of the lifting capacity).
  • Element thickness – for full efficiency, the steel must be sufficiently thick. Paper-thin metal restricts the attraction force (the magnet "punches through" it).
  • Steel type – mild steel gives the best results. Higher carbon content reduce magnetic permeability and holding force.
  • Surface condition – smooth surfaces ensure maximum contact, which increases force. Uneven metal weaken the grip.
  • Thermal factor – high temperature reduces pulling force. Exceeding the limit temperature can permanently damage the magnet.

Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under shearing force the load capacity is reduced by as much as 75%. In addition, even a minimal clearance between the magnet and the plate decreases the lifting capacity.

Safe handling of NdFeB magnets
Power loss in heat

Standard neodymium magnets (N-type) lose power when the temperature goes above 80°C. This process is irreversible.

Precision electronics

Navigation devices and mobile phones are extremely susceptible to magnetism. Close proximity with a powerful NdFeB magnet can decalibrate the internal compass in your phone.

Danger to the youngest

Only for adults. Tiny parts can be swallowed, leading to intestinal necrosis. Store away from children and animals.

Health Danger

People with a ICD have to maintain an large gap from magnets. The magnetism can interfere with the functioning of the life-saving device.

Dust is flammable

Dust produced during machining of magnets is flammable. Do not drill into magnets unless you are an expert.

Serious injuries

Mind your fingers. Two large magnets will snap together immediately with a force of massive weight, destroying everything in their path. Exercise extreme caution!

Nickel coating and allergies

Some people have a hypersensitivity to Ni, which is the typical protective layer for NdFeB magnets. Frequent touching may cause skin redness. We recommend use safety gloves.

Electronic devices

Device Safety: Strong magnets can damage data carriers and delicate electronics (heart implants, medical aids, mechanical watches).

Magnets are brittle

Protect your eyes. Magnets can fracture upon uncontrolled impact, launching shards into the air. Wear goggles.

Safe operation

Handle with care. Rare earth magnets attract from a long distance and connect with massive power, often quicker than you can react.

Warning! Learn more about risks in the article: Magnet Safety Guide.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98