tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our offer. All "magnets" on our website are in stock for immediate purchase (see the list). Check out the magnet pricing for more details check the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase strong neodymium magnet? Magnet holders in solid and airtight steel casing are ideally suited for use in difficult weather conditions, including in the rain and snow check...

magnets with holders

Magnetic holders can be applied to improve manufacturing, underwater discoveries, or searching for meteors from gold read...

Enjoy shipping of your order if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

CM PML-10 / N45 - magnetic gripper

magnetic gripper

Catalog no 100478

GTIN: 5906301812647

5

Weight

33300 g

Magnetization Direction

↑ axial

Load capacity

1000 kg / 9806.65 N

2019.05 with VAT / pcs + price for transport

1641.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1641.50 ZŁ
2019.05 ZŁ
price from 5 pcs
1477.35 ZŁ
1817.14 ZŁ

Hunting for a discount?

Pick up the phone and ask +48 888 99 98 98 if you prefer let us know via inquiry form the contact page.
Weight along with shape of magnets can be checked with our magnetic calculator.

Same-day processing for orders placed before 14:00.

CM PML-10 / N45 - magnetic gripper

Specification/characteristics CM PML-10 / N45 - magnetic gripper
properties
values
Cat. no.
100478
GTIN
5906301812647
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
33300 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1000 kg / 9806.65 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N45

properties
values
units
remenance Br [Min. - Max.] ?
13.2-13.7
kGs
remenance Br [Min. - Max.] ?
1320-1370
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
43-45
BH max MGOe
energy density [Min. - Max.] ?
342-358
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Their strengths include strong magnetic power, simple operation, and efficiency, as they do not require additional tools for securing. Some models come with a demagnetization system, making it easier to release items after transport.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They do not lose their magnetism, even after nearly ten years – the loss of strength is only ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is among the best,
  • By applying a bright layer of silver, the element gains a modern look,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • With the option for fine forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Wide application in cutting-edge sectors – they serve a purpose in hard drives, rotating machines, diagnostic apparatus along with sophisticated instruments,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and additionally reinforces its overall resistance,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create threads in the magnet – the use of a housing is recommended,
  • Health risk from tiny pieces may arise, if ingested accidentally, which is significant in the context of child safety. Additionally, miniature parts from these products have the potential to disrupt scanning once in the system,
  • In cases of tight budgets, neodymium magnet cost may be a barrier,

Maximum lifting capacity of the magnetwhat contributes to it?

The given holding capacity of the magnet means the highest holding force, assessed under optimal conditions, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with no separation
  • under perpendicular detachment force
  • at room temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet is determined by in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, whereas under shearing force the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate lowers the lifting capacity.

Precautions

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets will bounce and also clash together within a radius of several to almost 10 cm from each other.

Neodymium magnets are the strongest magnets ever created, and their power can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Magnets made of neodymium are highly susceptible to damage, resulting in shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Pay attention!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98