CM PML-10 / N45 - magnetic gripper
magnetic gripper
Catalog no 100478
GTIN: 5906301812647
Weight
33300 g
Magnetization Direction
↑ axial
Load capacity
1000 kg / 9806.65 N
2019.05 ZŁ with VAT / pcs + price for transport
1641.50 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure where to buy?
Call us now
+48 22 499 98 98
alternatively contact us via
form
the contact section.
Lifting power along with structure of magnets can be tested on our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
CM PML-10 / N45 - magnetic gripper
Magnetic properties of material N45
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their consistent magnetism, neodymium magnets have these key benefits:
- They have unchanged lifting capacity, and over nearly 10 years their attraction force decreases symbolically – ~1% (in testing),
- They are very resistant to demagnetization caused by external magnetic fields,
- By applying a shiny layer of gold, the element gains a clean look,
- They have very high magnetic induction on the surface of the magnet,
- Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- With the option for fine forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
- Significant impact in modern technologies – they are used in HDDs, electric drives, diagnostic apparatus as well as other advanced devices,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,
Disadvantages of NdFeB magnets:
- They may fracture when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and reinforces its overall robustness,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to moisture can degrade. Therefore, for outdoor applications, we advise waterproof types made of rubber,
- Limited ability to create threads in the magnet – the use of a external casing is recommended,
- Safety concern related to magnet particles may arise, when consumed by mistake, which is important in the context of child safety. Additionally, small elements from these products have the potential to interfere with diagnostics after being swallowed,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Maximum lifting force for a neodymium magnet – what contributes to it?
The given strength of the magnet corresponds to the optimal strength, assessed under optimal conditions, specifically:
- with the use of low-carbon steel plate acting as a magnetic yoke
- of a thickness of at least 10 mm
- with a smooth surface
- in conditions of no clearance
- with vertical force applied
- in normal thermal conditions
Determinants of lifting force in real conditions
Practical lifting force is dependent on elements, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under parallel forces the holding force is lower. Moreover, even a minimal clearance {between} the magnet and the plate lowers the load capacity.
Be Cautious with Neodymium Magnets
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a significant injury may occur. Magnets, depending on their size, are able even cut off a finger or there can be a severe pressure or even a fracture.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Magnets are not toys, children should not play with them.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Magnets made of neodymium are fragile and can easily crack and shatter.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.
Safety rules!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.
