e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnets Nd2Fe14B - our proposal. All magnesy in our store are available for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnets for searching F200 GOLD

Where to buy strong magnet? Magnet holders in airtight, solid enclosure are excellent for use in challenging climate conditions, including during rain and snow see more...

magnets with holders

Magnetic holders can be applied to enhance manufacturing, underwater exploration, or locating meteors from gold see...

We promise to ship your order on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

CM PML-10 / N45 - magnetic gripper

magnetic gripper

Catalog no 100478

GTIN: 5906301812647

5

Weight

33300 g

Magnetization Direction

↑ axial

Load capacity

1000 kg / 9806.65 N

2019.05 with VAT / pcs + price for transport

1641.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1641.50 ZŁ
2019.05 ZŁ
price from 5 pcs
1477.35 ZŁ
1817.14 ZŁ

Want to talk magnets?

Call us now +48 888 99 98 98 otherwise get in touch using request form the contact page.
Parameters and appearance of neodymium magnets can be calculated using our power calculator.

Orders placed before 14:00 will be shipped the same business day.

CM PML-10 / N45 - magnetic gripper

Specification/characteristics CM PML-10 / N45 - magnetic gripper
properties
values
Cat. no.
100478
GTIN
5906301812647
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
33300 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1000 kg / 9806.65 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N45

properties
values
units
remenance Br [Min. - Max.] ?
13.2-13.7
kGs
remenance Br [Min. - Max.] ?
1320-1370
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
43-45
BH max MGOe
energy density [Min. - Max.] ?
342-358
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

It is also crucial to use grippers that meet safety standards, e.g., those approved for compliance, which helps to minimize the risk of failure during operation.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They have unchanged lifting capacity, and over more than ten years their attraction force decreases symbolically – ~1% (according to theory),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • Because of the lustrous layer of silver, the component looks high-end,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which broadens their functional possibilities,
  • Significant impact in new technology industries – they find application in hard drives, rotating machines, healthcare devices as well as other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which allows for use in miniature devices

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and additionally strengthens its overall resistance,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of synthetic coating for outdoor use,
  • Limited ability to create threads in the magnet – the use of a housing is recommended,
  • Safety concern from tiny pieces may arise, especially if swallowed, which is important in the health of young users. Moreover, tiny components from these magnets have the potential to hinder health screening after being swallowed,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Magnetic strength at its maximum – what affects it?

The given holding capacity of the magnet represents the highest holding force, assessed in ideal conditions, that is:

  • with mild steel, serving as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with no separation
  • under perpendicular detachment force
  • at room temperature

Magnet lifting force in use – key factors

Practical lifting force is determined by factors, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the load capacity is reduced by as much as 5 times. In addition, even a small distance {between} the magnet and the plate decreases the load capacity.

Precautions

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or a fracture.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets made of neodymium are fragile as well as can easily break and get damaged.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Safety precautions!

To show why neodymium magnets are so dangerous, see the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98