MPL 50x25x12 / N38 - neodymium magnet
lamellar magnet
catalog number 020343
GTIN: 5906301811855
length
50
mm [±0,1 mm]
width
25
mm [±0,1 mm]
height
12
mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
33.50 kg / 328.52 N
magnetic induction ~
340.43 mT / 3,404 Gs
max. temperature
≤ 80
°C
catalog number 020343
GTIN: 5906301811855
length
50 mm [±0,1 mm]
width
25 mm [±0,1 mm]
height
12 mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
33.50 kg / 328.52 N
magnetic induction ~
340.43 mT / 3,404 Gs
max. temperature
≤ 80 °C
27.33 ZŁ gross price (including VAT) / pcs +
22.22 ZŁ net price + 23% VAT / pcs
bulk discounts:
need more quantity?Don't know what to buy?
Call us tel: +48 22 499 98 98 or write via form on the contact page. You can check the power as well as the appearance of neodymium magnet in our magnetic calculator magnetic calculator
Orders placed by 2:00 PM will be shipped on the same business day.
Specification: lamellar magnet 50x25x12 / N38 ↑ axial
Magnetic properties of the material N38
Physical properties of sintered neodymium magnets Nd2Fe14B
Thanks to their mighty power, flat magnets are regularly applied in structures that need exceptional adhesion.
The standard temperature resistance of these magnets is 80°C, but depending on the dimensions, this value rises.
Additionally, flat magnets often have special coatings applied to their surfaces, such as nickel, gold, or chrome, to improve their strength.
The magnet labeled MPL 50x25x12 / N38 i.e. a lifting capacity of 33.50 kg weighing a mere 112.50 grams, making it the ideal choice for applications requiring a flat shape.
Contact surface: Thanks to their flat shape, flat magnets guarantee a greater contact surface with adjacent parts, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These magnets are often utilized in various devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is crucial for their operation.
Mounting: This form's flat shape makes mounting, especially when it is necessary to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets gives the possibility designers a lot of flexibility in arranging them in devices, which can be more difficult with magnets of other shapes.
Stability: In some applications, the flat base of the flat magnet may offer better stability, reducing the risk of sliding or rotating. However, it's important to note that the optimal shape of the magnet is dependent on the specific project and requirements. In certain cases, other shapes, like cylindrical or spherical, may be a better choice.
Magnets have two main poles: north (N) and south (S), which interact with each other when they are different. Poles of the same kind, such as two north poles, repel each other.
Thanks to this principle of operation, magnets are commonly used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them perfect for applications requiring strong magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the material it is made of.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as compasses, magnetic stripe cards and even medical equipment, like pacemakers. Therefore, it is important to avoid placing magnets near such devices.
Recommended articles for purchase
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from immense power, neodymium magnets have the following advantages:
- They do not lose power over time. After about 10 years, their power decreases by only ~1% (theoretically),
- They protect against demagnetization caused by external magnetic sources extremely well,
- By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
- They exhibit extremely high magnetic induction on the surface of the magnet,
- Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the shape) even at temperatures of 230°C or higher...
- Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
- Significant importance in the industry of new technologies – are utilized in computer drives, electric motors, medical apparatus and various technologically advanced devices.
Disadvantages of neodymium magnets:
- They are prone to breaking as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, it is suggested using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
- They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
- Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
- The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
- Health risk arising from small pieces of magnets are risky, when accidentally ingested, which becomes significant in the context of child safety. Furthermore, small elements of these devices can hinder the diagnostic process when they are in the body.
Precautions
Do not give neodymium magnets to youngest children.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when attract. Magnets, depending on their size, are able even cut off a finger or there can be a significant pressure or a fracture.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnetic are highly fragile, they easily crack and can crumble.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can demagnetize at high temperatures.
In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.