MW 15x1 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010026
GTIN: 5906301810254
Diameter Ø [±0,1 mm]
15 mm
Height [±0,1 mm]
1 mm
Weight
1.33 g
Magnetization Direction
↑ axial
Load capacity
0.83 kg / 8.14 N
Magnetic Induction
81.93 mT
Coating
[NiCuNi] nickel
0.800 ZŁ with VAT / pcs + price for transport
0.650 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Call us now
+48 888 99 98 98
alternatively send us a note using
inquiry form
the contact form page.
Strength and appearance of a magnet can be analyzed using our
online calculation tool.
Orders placed before 14:00 will be shipped the same business day.
MW 15x1 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as silver, to shield them from external factors and extend their lifespan. High temperatures exceeding 130°C can result in a reduction of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their high retention, neodymium magnets are valued for these benefits:
- Their magnetic field remains stable, and after approximately ten years, it drops only by ~1% (theoretically),
- Their ability to resist magnetic interference from external fields is impressive,
- By applying a reflective layer of silver, the element gains a sleek look,
- They exhibit superior levels of magnetic induction near the outer area of the magnet,
- Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- With the option for customized forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
- Wide application in new technology industries – they serve a purpose in hard drives, electric drives, medical equipment along with technologically developed systems,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They can break when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and enhances its overall strength,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a wet environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of non-metallic materials,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing holes directly in the magnet,
- Safety concern from tiny pieces may arise, in case of ingestion, which is significant in the family environments. Additionally, minuscule fragments from these devices have the potential to disrupt scanning when ingested,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Best holding force of the magnet in ideal parameters – what it depends on?
The given holding capacity of the magnet means the highest holding force, determined in ideal conditions, specifically:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a polished side
- in conditions of no clearance
- under perpendicular detachment force
- at room temperature
Magnet lifting force in use – key factors
The lifting capacity of a magnet is determined by in practice key elements, ordered from most important to least significant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of suitable thickness, under perpendicular forces, however under shearing force the holding force is lower. Additionally, even a minimal clearance {between} the magnet and the plate lowers the lifting capacity.
We Recommend Caution with Neodymium Magnets
Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Neodymium magnets can become demagnetized at high temperatures.
In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
If joining of neodymium magnets is not controlled, at that time they may crumble and crack. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.
Neodymium magnets should not be in the vicinity children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets are known for being fragile, which can cause them to become damaged.
Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Pay attention!
So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are very powerful neodymium magnets?.