MW 14x3 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010025
GTIN/EAN: 5906301810247
Diameter Ø
14 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
3.46 g
Magnetization Direction
↑ axial
Load capacity
2.76 kg / 27.06 N
Magnetic Induction
244.11 mT / 2441 Gs
Coating
[NiCuNi] Nickel
1.845 ZŁ with VAT / pcs + price for transport
1.500 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 888 99 98 98
or drop us a message using
inquiry form
the contact section.
Weight along with structure of a magnet can be calculated using our
our magnetic calculator.
Same-day processing for orders placed before 14:00.
Technical details - MW 14x3 / N38 - cylindrical magnet
Specification / characteristics - MW 14x3 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010025 |
| GTIN/EAN | 5906301810247 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 14 mm [±0,1 mm] |
| Height | 3 mm [±0,1 mm] |
| Weight | 3.46 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 2.76 kg / 27.06 N |
| Magnetic Induction ~ ? | 244.11 mT / 2441 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the magnet - technical parameters
These data constitute the outcome of a engineering analysis. Values were calculated on models for the material Nd2Fe14B. Real-world conditions may differ. Treat these calculations as a supplementary guide when designing systems.
Table 1: Static force (force vs gap) - interaction chart
MW 14x3 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2440 Gs
244.0 mT
|
2.76 kg / 6.08 lbs
2760.0 g / 27.1 N
|
strong |
| 1 mm |
2199 Gs
219.9 mT
|
2.24 kg / 4.94 lbs
2241.6 g / 22.0 N
|
strong |
| 2 mm |
1900 Gs
190.0 mT
|
1.67 kg / 3.69 lbs
1673.8 g / 16.4 N
|
weak grip |
| 3 mm |
1593 Gs
159.3 mT
|
1.18 kg / 2.59 lbs
1175.5 g / 11.5 N
|
weak grip |
| 5 mm |
1062 Gs
106.2 mT
|
0.52 kg / 1.15 lbs
523.0 g / 5.1 N
|
weak grip |
| 10 mm |
380 Gs
38.0 mT
|
0.07 kg / 0.15 lbs
66.8 g / 0.7 N
|
weak grip |
| 15 mm |
160 Gs
16.0 mT
|
0.01 kg / 0.03 lbs
11.9 g / 0.1 N
|
weak grip |
| 20 mm |
79 Gs
7.9 mT
|
0.00 kg / 0.01 lbs
2.9 g / 0.0 N
|
weak grip |
| 30 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
weak grip |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Slippage hold (vertical surface)
MW 14x3 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.55 kg / 1.22 lbs
552.0 g / 5.4 N
|
| 1 mm | Stal (~0.2) |
0.45 kg / 0.99 lbs
448.0 g / 4.4 N
|
| 2 mm | Stal (~0.2) |
0.33 kg / 0.74 lbs
334.0 g / 3.3 N
|
| 3 mm | Stal (~0.2) |
0.24 kg / 0.52 lbs
236.0 g / 2.3 N
|
| 5 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MW 14x3 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.83 kg / 1.83 lbs
828.0 g / 8.1 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.55 kg / 1.22 lbs
552.0 g / 5.4 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.28 kg / 0.61 lbs
276.0 g / 2.7 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.38 kg / 3.04 lbs
1380.0 g / 13.5 N
|
Table 4: Steel thickness (substrate influence) - sheet metal selection
MW 14x3 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.28 kg / 0.61 lbs
276.0 g / 2.7 N
|
| 1 mm |
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| 2 mm |
|
1.38 kg / 3.04 lbs
1380.0 g / 13.5 N
|
| 3 mm |
|
2.07 kg / 4.56 lbs
2070.0 g / 20.3 N
|
| 5 mm |
|
2.76 kg / 6.08 lbs
2760.0 g / 27.1 N
|
| 10 mm |
|
2.76 kg / 6.08 lbs
2760.0 g / 27.1 N
|
| 11 mm |
|
2.76 kg / 6.08 lbs
2760.0 g / 27.1 N
|
| 12 mm |
|
2.76 kg / 6.08 lbs
2760.0 g / 27.1 N
|
Table 5: Thermal resistance (stability) - resistance threshold
MW 14x3 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.76 kg / 6.08 lbs
2760.0 g / 27.1 N
|
OK |
| 40 °C | -2.2% |
2.70 kg / 5.95 lbs
2699.3 g / 26.5 N
|
OK |
| 60 °C | -4.4% |
2.64 kg / 5.82 lbs
2638.6 g / 25.9 N
|
|
| 80 °C | -6.6% |
2.58 kg / 5.68 lbs
2577.8 g / 25.3 N
|
|
| 100 °C | -28.8% |
1.97 kg / 4.33 lbs
1965.1 g / 19.3 N
|
Table 6: Magnet-Magnet interaction (attraction) - field range
MW 14x3 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
5.65 kg / 12.46 lbs
4 030 Gs
|
0.85 kg / 1.87 lbs
848 g / 8.3 N
|
N/A |
| 1 mm |
5.16 kg / 11.37 lbs
4 662 Gs
|
0.77 kg / 1.71 lbs
773 g / 7.6 N
|
4.64 kg / 10.23 lbs
~0 Gs
|
| 2 mm |
4.59 kg / 10.12 lbs
4 398 Gs
|
0.69 kg / 1.52 lbs
689 g / 6.8 N
|
4.13 kg / 9.11 lbs
~0 Gs
|
| 3 mm |
4.00 kg / 8.82 lbs
4 107 Gs
|
0.60 kg / 1.32 lbs
600 g / 5.9 N
|
3.60 kg / 7.94 lbs
~0 Gs
|
| 5 mm |
2.89 kg / 6.37 lbs
3 490 Gs
|
0.43 kg / 0.96 lbs
434 g / 4.3 N
|
2.60 kg / 5.74 lbs
~0 Gs
|
| 10 mm |
1.07 kg / 2.36 lbs
2 125 Gs
|
0.16 kg / 0.35 lbs
161 g / 1.6 N
|
0.96 kg / 2.12 lbs
~0 Gs
|
| 20 mm |
0.14 kg / 0.30 lbs
759 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
89 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MW 14x3 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 3.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 3.0 cm |
| Remote | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (cracking risk) - collision effects
MW 14x3 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
28.91 km/h
(8.03 m/s)
|
0.11 J | |
| 30 mm |
49.34 km/h
(13.71 m/s)
|
0.32 J | |
| 50 mm |
63.69 km/h
(17.69 m/s)
|
0.54 J | |
| 100 mm |
90.07 km/h
(25.02 m/s)
|
1.08 J |
Table 9: Surface protection spec
MW 14x3 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 14x3 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 4 301 Mx | 43.0 µWb |
| Pc Coefficient | 0.31 | Low (Flat) |
Table 11: Physics of underwater searching
MW 14x3 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 2.76 kg | Standard |
| Water (riverbed) |
3.16 kg
(+0.40 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Caution: On a vertical wall, the magnet holds merely ~20% of its max power.
2. Efficiency vs thickness
*Thin metal sheet (e.g. 0.5mm PC case) severely weakens the holding force.
3. Thermal stability
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.31
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View more deals
Advantages as well as disadvantages of Nd2Fe14B magnets.
Strengths
- They retain magnetic properties for around ten years – the loss is just ~1% (according to analyses),
- Magnets effectively resist against loss of magnetization caused by external fields,
- A magnet with a metallic nickel surface looks better,
- Magnets exhibit exceptionally strong magnetic induction on the working surface,
- Through (adequate) combination of ingredients, they can achieve high thermal resistance, allowing for operation at temperatures approaching 230°C and above...
- Possibility of detailed forming as well as adjusting to precise needs,
- Universal use in future technologies – they are commonly used in HDD drives, motor assemblies, medical equipment, and multitasking production systems.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Disadvantages
- They are prone to damage upon heavy impacts. To avoid cracks, it is worth protecting magnets in special housings. Such protection not only protects the magnet but also increases its resistance to damage
- When exposed to high temperature, neodymium magnets experience a drop in force. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- They rust in a humid environment - during use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- We suggest cover - magnetic holder, due to difficulties in realizing nuts inside the magnet and complex forms.
- Health risk to health – tiny shards of magnets can be dangerous, in case of ingestion, which is particularly important in the context of child health protection. Additionally, small elements of these magnets can be problematic in diagnostics medical when they are in the body.
- High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which hinders application in large quantities
Lifting parameters
Maximum lifting force for a neodymium magnet – what affects it?
- with the contact of a sheet made of special test steel, ensuring maximum field concentration
- possessing a thickness of min. 10 mm to avoid saturation
- with an ground contact surface
- with zero gap (no coatings)
- for force applied at a right angle (pull-off, not shear)
- in temp. approx. 20°C
Magnet lifting force in use – key factors
- Space between surfaces – every millimeter of distance (caused e.g. by varnish or unevenness) diminishes the pulling force, often by half at just 0.5 mm.
- Angle of force application – highest force is obtained only during perpendicular pulling. The resistance to sliding of the magnet along the surface is usually many times lower (approx. 1/5 of the lifting capacity).
- Wall thickness – the thinner the sheet, the weaker the hold. Magnetic flux passes through the material instead of generating force.
- Material type – ideal substrate is high-permeability steel. Hardened steels may generate lower lifting capacity.
- Surface quality – the smoother and more polished the surface, the better the adhesion and higher the lifting capacity. Roughness creates an air distance.
- Temperature – temperature increase causes a temporary drop of induction. It is worth remembering the maximum operating temperature for a given model.
Lifting capacity was assessed by applying a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under parallel forces the load capacity is reduced by as much as 5 times. Additionally, even a minimal clearance between the magnet’s surface and the plate reduces the load capacity.
H&S for magnets
Warning for heart patients
For implant holders: Powerful magnets disrupt medical devices. Maintain at least 30 cm distance or request help to work with the magnets.
Do not underestimate power
Before starting, read the rules. Uncontrolled attraction can destroy the magnet or injure your hand. Think ahead.
Skin irritation risks
Warning for allergy sufferers: The nickel-copper-nickel coating consists of nickel. If skin irritation appears, cease handling magnets and wear gloves.
Mechanical processing
Drilling and cutting of NdFeB material poses a fire hazard. Neodymium dust oxidizes rapidly with oxygen and is difficult to extinguish.
Eye protection
Beware of splinters. Magnets can explode upon uncontrolled impact, launching shards into the air. Eye protection is mandatory.
Safe distance
Equipment safety: Strong magnets can ruin payment cards and delicate electronics (heart implants, hearing aids, timepieces).
Threat to navigation
Navigation devices and mobile phones are highly susceptible to magnetic fields. Close proximity with a strong magnet can permanently damage the internal compass in your phone.
Pinching danger
Protect your hands. Two powerful magnets will join immediately with a force of massive weight, crushing anything in their path. Be careful!
Permanent damage
Avoid heat. Neodymium magnets are sensitive to temperature. If you require resistance above 80°C, inquire about HT versions (H, SH, UH).
This is not a toy
Only for adults. Tiny parts can be swallowed, leading to serious injuries. Keep away from kids and pets.
