tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. All magnesy on our website are in stock for immediate purchase (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to purchase very strong magnet? Magnetic holders in airtight and durable steel enclosure are perfect for use in variable and difficult weather, including during snow and rain read...

magnetic holders

Magnetic holders can be used to enhance manufacturing, underwater discoveries, or locating meteorites from gold see more...

Order is always shipped on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 14x3 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010025

GTIN: 5906301810247

5

Diameter Ø [±0,1 mm]

14 mm

Height [±0,1 mm]

3 mm

Weight

3.46 g

Magnetization Direction

↑ axial

Load capacity

2.32 kg / 22.75 N

Magnetic Induction

244.11 mT

Coating

[NiCuNi] nickel

1.845 with VAT / pcs + price for transport

1.500 ZŁ net + 23% VAT / pcs

1.360 ZŁ net was the lowest price in the last 30 days

bulk discounts:

Need more?

price from 1 pcs
1.500 ZŁ
1.845 ZŁ
price from 400 pcs
1.410 ZŁ
1.734 ZŁ
price from 1700 pcs
1.320 ZŁ
1.624 ZŁ

Do you have a dilemma?

Call us now +48 22 499 98 98 or send us a note by means of request form the contact form page.
Specifications and form of neodymium magnets can be estimated with our magnetic calculator.

Same-day shipping for orders placed before 14:00.

MW 14x3 / N38 - cylindrical magnet

Specification/characteristics MW 14x3 / N38 - cylindrical magnet
properties
values
Cat. no.
010025
GTIN
5906301810247
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
14 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
3.46 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
2.32 kg / 22.75 N
Magnetic Induction ~ ?
244.11 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 14x3 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which exceed traditional ferrite magnets. Because of their power, they are often used in devices that need powerful holding. The standard temperature resistance of these magnets is 80°C, but for magnets in a cylindrical form, this temperature rises with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their resistance to corrosion. The shape of a cylinder is as well very popular among neodymium magnets. The magnet designated MW 14x3 / N38 and a magnetic lifting capacity of 2.32 kg has a weight of only 3.46 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the latest information as well as promotions, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are useful in various applications, they can also pose certain dangers. Because of their significant magnetic power, they can pull metallic objects with uncontrolled force, which can lead to crushing skin as well as other materials, especially hands. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. Generally, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the strongest available magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with additional metals and then shaping and thermal processing. Their amazing magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as silver, to protect them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical magnet in classes N50 and N52 is a strong and extremely powerful magnetic product designed as a cylinder, providing strong holding power and universal applicability. Attractive price, fast shipping, durability and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • Their magnetic field is maintained, and after approximately 10 years, it drops only by ~1% (according to research),
  • They remain magnetized despite exposure to magnetic noise,
  • The use of a mirror-like nickel surface provides a smooth finish,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which increases their usage potential,
  • Important function in advanced technical fields – they serve a purpose in computer drives, rotating machines, medical equipment and sophisticated instruments,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to shocks, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time increases its overall durability,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a wet environment. If exposed to rain, we recommend using sealed magnets, such as those made of rubber,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Potential hazard from tiny pieces may arise, in case of ingestion, which is significant in the health of young users. It should also be noted that tiny components from these products might interfere with diagnostics if inside the body,
  • In cases of large-volume purchasing, neodymium magnet cost may be a barrier,

Maximum magnetic pulling forcewhat it depends on?

The given holding capacity of the magnet means the highest holding force, determined in ideal conditions, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a polished side
  • with no separation
  • with vertical force applied
  • in normal thermal conditions

Determinants of lifting force in real conditions

Practical lifting force is determined by elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, however under attempts to slide the magnet the holding force is lower. Moreover, even a small distance {between} the magnet and the plate decreases the lifting capacity.

Precautions

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Magnets made of neodymium are delicate as well as can easily break as well as shatter.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

  Neodymium magnets should not be around children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If joining of neodymium magnets is not controlled, at that time they may crumble and crack. You can't approach them to each other. At a distance less than 10 cm you should hold them very firmly.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Caution!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98