e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. Practically all "neodymium magnets" on our website are in stock for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnet for searching F300 GOLD

Where to purchase powerful magnet? Magnetic holders in airtight, solid steel enclosure are excellent for use in variable and difficult weather conditions, including during rain and snow see...

magnets with holders

Magnetic holders can be used to enhance manufacturing, underwater exploration, or finding meteors made of metal check...

Shipping is always shipped on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 5x2.7/1.2x5 Z / N38 - ring magnet

ring magnet

Catalog no 030203

GTIN: 5906301812203

5

Diameter [±0,1 mm]

5 mm

internal diameter Ø [±0,1 mm]

2.7/1.2 mm

Height [±0,1 mm]

5 mm

Weight

3.59 g

Magnetization Direction

↑ axial

Load capacity

0.56 kg / 5.49 N

Magnetic Induction

56.04 mT

Coating

[NiCuNi] nickel

0.84 with VAT / pcs + price for transport

0.68 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.68 ZŁ
0.84 ZŁ
price from 900 pcs
0.64 ZŁ
0.79 ZŁ
price from 3700 pcs
0.60 ZŁ
0.74 ZŁ

Can't decide what to choose?

Pick up the phone and ask +48 22 499 98 98 alternatively drop us a message by means of form our website.
Force as well as shape of magnets can be estimated using our force calculator.

Same-day processing for orders placed before 14:00.

MP 5x2.7/1.2x5 Z / N38 - ring magnet

Specification/characteristics MP 5x2.7/1.2x5 Z / N38 - ring magnet
properties
values
Cat. no.
030203
GTIN
5906301812203
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
5 mm [±0,1 mm]
internal diameter Ø
2.7/1.2 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
3.59 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.56 kg / 5.49 N
Magnetic Induction ~ ?
56.04 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium magnets MP 5x2.7/1.2x5 Z / N38 in a ring form are frequently used in various industries due to their unique properties. Thanks to a powerful magnetic field of 0.56 kg, which can be described as lifting capacity, they are key in applications that require high magnetic power in a relatively small area. Applications of MP 5x2.7/1.2x5 Z / N38 magnets include electric motors, generators, audio systems, and numerous other devices that use magnets for producing motion or energy storage. Despite their powerful strength, they have a relatively low weight of 3.59 grams, which makes them more practical compared to heavier alternatives.
The operation of ring magnets results from their unique atomic structure. Their properties arise from a controlled production process, including sintering and magnetization, which allows for the creation of a concentrated magnetic field in a specific direction. This makes them perfect for devices such as stepper motors or industrial robots. Additionally, their resistance to high temperatures and demagnetization makes them indispensable in industry.
Ring magnets have a wide range of applications in many industries, such as production of electronic devices, such as speakers and electric motors, automotive, where they are used in brushless electric motors, and medical equipment, e.g., in scanning devices. Their ability to work in high temperatures and precise magnetic field control makes them indispensable in challenging industrial conditions.
Their uniqueness comes from high magnetic strength, ability to work in extreme conditions, and precision in generating the magnetic field. Their unique ring form allows for application in devices requiring concentrated magnetic fields. Additionally, these magnets are significantly stronger and more versatile than ferrite counterparts, making them an ideal choice in the automotive, electronics, and medical industries.
Thanks to their resistance to high temperatures, ring magnets operate reliably even in tough conditions. Their magnetic properties remain stable, as long as the temperature does not exceed the Curie point. Compared to other types of magnets, ring magnets show greater resistance to demagnetization. Because of this, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.
A ring magnet in classes N50 and N52 is a strong and powerful metallic component with the shape of a ring, providing strong holding power and broad usability. Good price, fast shipping, ruggedness and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (according to literature),
  • They are very resistant to demagnetization caused by external field interference,
  • In other words, due to the metallic gold coating, the magnet obtains an stylish appearance,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • With the option for customized forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
  • Key role in advanced technical fields – they serve a purpose in computer drives, electric drives, healthcare devices and technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them useful in miniature devices

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time enhances its overall strength,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a wet environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of polymer,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
  • Possible threat related to magnet particles may arise, when consumed by mistake, which is important in the context of child safety. It should also be noted that minuscule fragments from these devices have the potential to hinder health screening after being swallowed,
  • In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,

Breakaway strength of the magnet in ideal conditionswhat it depends on?

The given holding capacity of the magnet represents the highest holding force, determined in ideal conditions, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with no separation
  • with vertical force applied
  • under standard ambient temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet depends on in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under shearing force the load capacity is reduced by as much as 75%. Additionally, even a minimal clearance {between} the magnet’s surface and the plate lowers the load capacity.

Handle Neodymium Magnets Carefully

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are particularly delicate, which leads to their breakage.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Magnets, depending on their size, are able even cut off a finger or there can be a significant pressure or even a fracture.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are the strongest magnets ever created, and their power can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Warning!

So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98