Powerful neodymium magnets: discs and cylinders

Want to buy really powerful magnets? We have in stock complete range of disc, cylindrical and ring magnets. Best choice for domestic applications, garage and model making. See products with fast shipping.

discover price list and dimensions

Equipment for treasure hunters

Discover your passion involving underwater treasure hunting! Our double-handle grips (F200, F400) provide grip certainty and immense power. Solid, corrosion-resistant housing and reinforced ropes will perform in rivers and lakes.

choose your water magnet

Industrial magnetic grips mounting

Reliable solutions for fixing without drilling. Threaded mounts (M8, M10, M12) guarantee instant organization of work on production halls. They are indispensable mounting lamps, detectors and ads.

see industrial applications

📦 Fast shipping: buy by 14:00, package goes out today!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MP 5x2.7/1.2x5 Z / N38 - ring magnet

ring magnet

Catalog no 030203

GTIN/EAN: 5906301812203

5.00

Diameter

5 mm [±0,1 mm]

internal diameter Ø

2.7/1.2 mm [±0,1 mm]

Height

5 mm [±0,1 mm]

Weight

0.69 g

Magnetization Direction

↑ axial

Load capacity

0.75 kg / 7.31 N

Magnetic Induction

553.14 mT / 5531 Gs

Coating

[NiCuNi] Nickel

0.836 with VAT / pcs + price for transport

0.680 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.680 ZŁ
0.836 ZŁ
price from 900 pcs
0.639 ZŁ
0.786 ZŁ
price from 3700 pcs
0.598 ZŁ
0.736 ZŁ
Want to talk magnets?

Contact us by phone +48 22 499 98 98 or let us know through contact form our website.
Lifting power along with appearance of magnetic components can be checked on our modular calculator.

Orders placed before 14:00 will be shipped the same business day.

Technical of the product - MP 5x2.7/1.2x5 Z / N38 - ring magnet

Specification / characteristics - MP 5x2.7/1.2x5 Z / N38 - ring magnet

properties
properties values
Cat. no. 030203
GTIN/EAN 5906301812203
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter 5 mm [±0,1 mm]
internal diameter Ø 2.7/1.2 mm [±0,1 mm]
Height 5 mm [±0,1 mm]
Weight 0.69 g
Magnetization Direction ↑ axial
Load capacity ~ ? 0.75 kg / 7.31 N
Magnetic Induction ~ ? 553.14 mT / 5531 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MP 5x2.7/1.2x5 Z / N38 - ring magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Technical modeling of the product - technical parameters

These data are the result of a engineering simulation. Values were calculated on algorithms for the material Nd2Fe14B. Operational performance might slightly differ from theoretical values. Please consider these calculations as a preliminary roadmap for designers.

Table 1: Static force (force vs distance) - characteristics
MP 5x2.7/1.2x5 Z / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 5322 Gs
532.2 mT
0.75 kg / 1.65 LBS
750.0 g / 7.4 N
safe
1 mm 3295 Gs
329.5 mT
0.29 kg / 0.63 LBS
287.5 g / 2.8 N
safe
2 mm 1883 Gs
188.3 mT
0.09 kg / 0.21 LBS
93.9 g / 0.9 N
safe
3 mm 1098 Gs
109.8 mT
0.03 kg / 0.07 LBS
31.9 g / 0.3 N
safe
5 mm 440 Gs
44.0 mT
0.01 kg / 0.01 LBS
5.1 g / 0.1 N
safe
10 mm 92 Gs
9.2 mT
0.00 kg / 0.00 LBS
0.2 g / 0.0 N
safe
15 mm 33 Gs
3.3 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
safe
20 mm 15 Gs
1.5 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
safe
30 mm 5 Gs
0.5 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
safe
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
safe

Table 2: Shear hold (vertical surface)
MP 5x2.7/1.2x5 Z / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.15 kg / 0.33 LBS
150.0 g / 1.5 N
1 mm Stal (~0.2) 0.06 kg / 0.13 LBS
58.0 g / 0.6 N
2 mm Stal (~0.2) 0.02 kg / 0.04 LBS
18.0 g / 0.2 N
3 mm Stal (~0.2) 0.01 kg / 0.01 LBS
6.0 g / 0.1 N
5 mm Stal (~0.2) 0.00 kg / 0.00 LBS
2.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N

Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MP 5x2.7/1.2x5 Z / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.22 kg / 0.50 LBS
225.0 g / 2.2 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.15 kg / 0.33 LBS
150.0 g / 1.5 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.08 kg / 0.17 LBS
75.0 g / 0.7 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.38 kg / 0.83 LBS
375.0 g / 3.7 N

Table 4: Steel thickness (saturation) - sheet metal selection
MP 5x2.7/1.2x5 Z / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.08 kg / 0.17 LBS
75.0 g / 0.7 N
1 mm
25%
0.19 kg / 0.41 LBS
187.5 g / 1.8 N
2 mm
50%
0.38 kg / 0.83 LBS
375.0 g / 3.7 N
3 mm
75%
0.56 kg / 1.24 LBS
562.5 g / 5.5 N
5 mm
100%
0.75 kg / 1.65 LBS
750.0 g / 7.4 N
10 mm
100%
0.75 kg / 1.65 LBS
750.0 g / 7.4 N
11 mm
100%
0.75 kg / 1.65 LBS
750.0 g / 7.4 N
12 mm
100%
0.75 kg / 1.65 LBS
750.0 g / 7.4 N

Table 5: Working in heat (material behavior) - thermal limit
MP 5x2.7/1.2x5 Z / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 0.75 kg / 1.65 LBS
750.0 g / 7.4 N
OK
40 °C -2.2% 0.73 kg / 1.62 LBS
733.5 g / 7.2 N
OK
60 °C -4.4% 0.72 kg / 1.58 LBS
717.0 g / 7.0 N
OK
80 °C -6.6% 0.70 kg / 1.54 LBS
700.5 g / 6.9 N
100 °C -28.8% 0.53 kg / 1.18 LBS
534.0 g / 5.2 N

Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MP 5x2.7/1.2x5 Z / N38

Gap (mm) Attraction (kg/lbs) (N-S) Lateral Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 2.75 kg / 6.06 LBS
5 924 Gs
0.41 kg / 0.91 LBS
412 g / 4.0 N
N/A
1 mm 1.77 kg / 3.90 LBS
8 541 Gs
0.27 kg / 0.58 LBS
265 g / 2.6 N
1.59 kg / 3.51 LBS
~0 Gs
2 mm 1.05 kg / 2.32 LBS
6 590 Gs
0.16 kg / 0.35 LBS
158 g / 1.5 N
0.95 kg / 2.09 LBS
~0 Gs
3 mm 0.60 kg / 1.33 LBS
4 992 Gs
0.09 kg / 0.20 LBS
91 g / 0.9 N
0.54 kg / 1.20 LBS
~0 Gs
5 mm 0.20 kg / 0.44 LBS
2 860 Gs
0.03 kg / 0.07 LBS
30 g / 0.3 N
0.18 kg / 0.39 LBS
~0 Gs
10 mm 0.02 kg / 0.04 LBS
880 Gs
0.00 kg / 0.01 LBS
3 g / 0.0 N
0.02 kg / 0.04 LBS
~0 Gs
20 mm 0.00 kg / 0.00 LBS
184 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
50 mm 0.00 kg / 0.00 LBS
16 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
60 mm 0.00 kg / 0.00 LBS
10 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
70 mm 0.00 kg / 0.00 LBS
6 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
80 mm 0.00 kg / 0.00 LBS
4 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
90 mm 0.00 kg / 0.00 LBS
3 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
100 mm 0.00 kg / 0.00 LBS
2 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs

Table 7: Protective zones (implants) - warnings
MP 5x2.7/1.2x5 Z / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 3.0 cm
Hearing aid 10 Gs (1.0 mT) 2.5 cm
Timepiece 20 Gs (2.0 mT) 2.0 cm
Mobile device 40 Gs (4.0 mT) 1.5 cm
Remote 50 Gs (5.0 mT) 1.5 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 0.5 cm

Table 8: Impact energy (kinetic energy) - collision effects
MP 5x2.7/1.2x5 Z / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 33.26 km/h
(9.24 m/s)
0.03 J
30 mm 57.59 km/h
(16.00 m/s)
0.09 J
50 mm 74.35 km/h
(20.65 m/s)
0.15 J
100 mm 105.14 km/h
(29.21 m/s)
0.29 J

Table 9: Corrosion resistance
MP 5x2.7/1.2x5 Z / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Pc)
MP 5x2.7/1.2x5 Z / N38

Parameter Value SI Unit / Description
Magnetic Flux 862 Mx 8.6 µWb
Pc Coefficient 0.83 High (Stable)

Table 11: Physics of underwater searching
MP 5x2.7/1.2x5 Z / N38

Environment Effective steel pull Effect
Air (land) 0.75 kg Standard
Water (riverbed) 0.86 kg
(+0.11 kg buoyancy gain)
+14.5%
Corrosion warning: Standard nickel requires drying after every contact with moisture; lack of maintenance will lead to rust spots.
1. Vertical hold

*Warning: On a vertical wall, the magnet holds only a fraction of its nominal pull.

2. Plate thickness effect

*Thin metal sheet (e.g. computer case) drastically limits the holding force.

3. Temperature resistance

*For standard magnets, the max working temp is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.83

The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Engineering data and GPSR
Material specification
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Sustainability
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 030203-2026
Quick Unit Converter
Magnet pull force

Field Strength

See more proposals

The ring-shaped magnet MP 5x2.7/1.2x5 Z / N38 is created for mechanical fastening, where glue might fail or be insufficient. Thanks to the hole (often for a screw), this model enables easy screwing to wood, wall, plastic, or metal. It is also often used in advertising for fixing signs and in workshops for organizing tools.
This is a crucial issue when working with model MP 5x2.7/1.2x5 Z / N38. Neodymium magnets are sintered ceramics, which means they are hard but breakable and inelastic. When tightening the screw, you must maintain caution. We recommend tightening manually with a screwdriver, not an impact driver, because excessive force will cause the ring to crack. The flat screw head should evenly press the magnet. Remember: cracking during assembly results from material properties, not a product defect.
Moisture can penetrate micro-cracks in the coating and cause oxidation of the magnet. Damage to the protective layer during assembly is the most common cause of rusting. If you must use it outside, paint it with anti-corrosion paint after mounting.
A screw or bolt with a thread diameter smaller than 2.7/1.2 mm fits this model. If the magnet does not have a chamfer (cone), we recommend using a screw with a flat or cylindrical head, or possibly using a washer. Aesthetic mounting requires selecting the appropriate head size.
It is a magnetic ring with a diameter of 5 mm and thickness 5 mm. The pulling force of this model is an impressive 0.75 kg, which translates to 7.31 N in newtons. The mounting hole diameter is precisely 2.7/1.2 mm.
These magnets are magnetized axially (through the thickness), which means one flat side is the N pole and the other is S. If you want two such magnets screwed with cones facing each other (faces) to attract, you must connect them with opposite poles (N to S). We do not offer paired sets with marked poles in this category, but they are easy to match manually.

Pros as well as cons of neodymium magnets.

Benefits

Apart from their superior power, neodymium magnets have these key benefits:
  • They have unchanged lifting capacity, and over nearly 10 years their attraction force decreases symbolically – ~1% (in testing),
  • They do not lose their magnetic properties even under close interference source,
  • The use of an refined layer of noble metals (nickel, gold, silver) causes the element to look better,
  • The surface of neodymium magnets generates a powerful magnetic field – this is one of their assets,
  • Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can function (depending on the form) even at a temperature of 230°C or more...
  • Possibility of detailed creating as well as optimizing to specific applications,
  • Versatile presence in innovative solutions – they are utilized in magnetic memories, electric motors, precision medical tools, as well as multitasking production systems.
  • Thanks to efficiency per cm³, small magnets offer high operating force, occupying minimum space,

Limitations

Cons of neodymium magnets: tips and applications.
  • To avoid cracks upon strong impacts, we recommend using special steel holders. Such a solution secures the magnet and simultaneously improves its durability.
  • When exposed to high temperature, neodymium magnets experience a drop in force. Often, when the temperature exceeds 80°C, their power decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
  • When exposed to humidity, magnets start to rust. To use them in conditions outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which secure oxidation as well as corrosion.
  • Limited ability of making nuts in the magnet and complex shapes - preferred is casing - magnet mounting.
  • Potential hazard resulting from small fragments of magnets are risky, when accidentally swallowed, which becomes key in the aspect of protecting the youngest. Additionally, small components of these products can be problematic in diagnostics medical when they are in the body.
  • High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which can limit application in large quantities

Lifting parameters

Maximum holding power of the magnet – what affects it?

Magnet power was determined for optimal configuration, including:
  • on a plate made of mild steel, perfectly concentrating the magnetic flux
  • with a thickness of at least 10 mm
  • with a surface cleaned and smooth
  • under conditions of gap-free contact (surface-to-surface)
  • during detachment in a direction perpendicular to the plane
  • in neutral thermal conditions

Practical aspects of lifting capacity – factors

In real-world applications, the actual holding force results from several key aspects, listed from most significant:
  • Distance – existence of any layer (paint, tape, air) acts as an insulator, which lowers power steeply (even by 50% at 0.5 mm).
  • Loading method – declared lifting capacity refers to pulling vertically. When slipping, the magnet exhibits much less (often approx. 20-30% of maximum force).
  • Wall thickness – thin material does not allow full use of the magnet. Part of the magnetic field passes through the material instead of generating force.
  • Metal type – not every steel attracts identically. High carbon content worsen the attraction effect.
  • Surface structure – the smoother and more polished the plate, the better the adhesion and stronger the hold. Roughness creates an air distance.
  • Temperature influence – hot environment weakens pulling force. Exceeding the limit temperature can permanently damage the magnet.

Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under shearing force the lifting capacity is smaller. In addition, even a slight gap between the magnet’s surface and the plate reduces the holding force.

H&S for magnets
Immense force

Before use, check safety instructions. Sudden snapping can destroy the magnet or hurt your hand. Think ahead.

Demagnetization risk

Regular neodymium magnets (N-type) undergo demagnetization when the temperature surpasses 80°C. This process is irreversible.

Precision electronics

Navigation devices and smartphones are extremely sensitive to magnetism. Direct contact with a strong magnet can ruin the internal compass in your phone.

Dust explosion hazard

Machining of NdFeB material carries a risk of fire hazard. Magnetic powder reacts violently with oxygen and is difficult to extinguish.

Pinching danger

Large magnets can smash fingers instantly. Under no circumstances place your hand between two attracting surfaces.

Pacemakers

Individuals with a ICD have to keep an absolute distance from magnets. The magnetic field can interfere with the operation of the implant.

Magnets are brittle

NdFeB magnets are ceramic materials, which means they are very brittle. Impact of two magnets leads to them breaking into small pieces.

No play value

Neodymium magnets are not toys. Accidental ingestion of a few magnets can lead to them attracting across intestines, which constitutes a direct threat to life and requires immediate surgery.

Electronic devices

Do not bring magnets close to a wallet, computer, or TV. The magnetic field can permanently damage these devices and wipe information from cards.

Skin irritation risks

Nickel alert: The nickel-copper-nickel coating contains nickel. If skin irritation appears, immediately stop working with magnets and wear gloves.

Security! Learn more about risks in the article: Magnet Safety Guide.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98