MP 5x2.7/1.2x5 Z / N38 - ring magnet
ring magnet
Catalog no 030203
GTIN/EAN: 5906301812203
Diameter
5 mm [±0,1 mm]
internal diameter Ø
2.7/1.2 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
0.69 g
Magnetization Direction
↑ axial
Load capacity
0.75 kg / 7.31 N
Magnetic Induction
553.14 mT / 5531 Gs
Coating
[NiCuNi] Nickel
0.836 ZŁ with VAT / pcs + price for transport
0.680 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 22 499 98 98
or let us know through
contact form
our website.
Lifting power along with appearance of magnetic components can be checked on our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical of the product - MP 5x2.7/1.2x5 Z / N38 - ring magnet
Specification / characteristics - MP 5x2.7/1.2x5 Z / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030203 |
| GTIN/EAN | 5906301812203 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 5 mm [±0,1 mm] |
| internal diameter Ø | 2.7/1.2 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 0.69 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.75 kg / 7.31 N |
| Magnetic Induction ~ ? | 553.14 mT / 5531 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical modeling of the product - technical parameters
These data are the result of a engineering simulation. Values were calculated on algorithms for the material Nd2Fe14B. Operational performance might slightly differ from theoretical values. Please consider these calculations as a preliminary roadmap for designers.
Table 1: Static force (force vs distance) - characteristics
MP 5x2.7/1.2x5 Z / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5322 Gs
532.2 mT
|
0.75 kg / 1.65 LBS
750.0 g / 7.4 N
|
safe |
| 1 mm |
3295 Gs
329.5 mT
|
0.29 kg / 0.63 LBS
287.5 g / 2.8 N
|
safe |
| 2 mm |
1883 Gs
188.3 mT
|
0.09 kg / 0.21 LBS
93.9 g / 0.9 N
|
safe |
| 3 mm |
1098 Gs
109.8 mT
|
0.03 kg / 0.07 LBS
31.9 g / 0.3 N
|
safe |
| 5 mm |
440 Gs
44.0 mT
|
0.01 kg / 0.01 LBS
5.1 g / 0.1 N
|
safe |
| 10 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.00 LBS
0.2 g / 0.0 N
|
safe |
| 15 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
Table 2: Shear hold (vertical surface)
MP 5x2.7/1.2x5 Z / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 0.33 LBS
150.0 g / 1.5 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 0.13 LBS
58.0 g / 0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 0.04 LBS
18.0 g / 0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.01 LBS
6.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MP 5x2.7/1.2x5 Z / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.22 kg / 0.50 LBS
225.0 g / 2.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 0.33 LBS
150.0 g / 1.5 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 0.17 LBS
75.0 g / 0.7 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.38 kg / 0.83 LBS
375.0 g / 3.7 N
|
Table 4: Steel thickness (saturation) - sheet metal selection
MP 5x2.7/1.2x5 Z / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 0.17 LBS
75.0 g / 0.7 N
|
| 1 mm |
|
0.19 kg / 0.41 LBS
187.5 g / 1.8 N
|
| 2 mm |
|
0.38 kg / 0.83 LBS
375.0 g / 3.7 N
|
| 3 mm |
|
0.56 kg / 1.24 LBS
562.5 g / 5.5 N
|
| 5 mm |
|
0.75 kg / 1.65 LBS
750.0 g / 7.4 N
|
| 10 mm |
|
0.75 kg / 1.65 LBS
750.0 g / 7.4 N
|
| 11 mm |
|
0.75 kg / 1.65 LBS
750.0 g / 7.4 N
|
| 12 mm |
|
0.75 kg / 1.65 LBS
750.0 g / 7.4 N
|
Table 5: Working in heat (material behavior) - thermal limit
MP 5x2.7/1.2x5 Z / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.75 kg / 1.65 LBS
750.0 g / 7.4 N
|
OK |
| 40 °C | -2.2% |
0.73 kg / 1.62 LBS
733.5 g / 7.2 N
|
OK |
| 60 °C | -4.4% |
0.72 kg / 1.58 LBS
717.0 g / 7.0 N
|
OK |
| 80 °C | -6.6% |
0.70 kg / 1.54 LBS
700.5 g / 6.9 N
|
|
| 100 °C | -28.8% |
0.53 kg / 1.18 LBS
534.0 g / 5.2 N
|
Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MP 5x2.7/1.2x5 Z / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.75 kg / 6.06 LBS
5 924 Gs
|
0.41 kg / 0.91 LBS
412 g / 4.0 N
|
N/A |
| 1 mm |
1.77 kg / 3.90 LBS
8 541 Gs
|
0.27 kg / 0.58 LBS
265 g / 2.6 N
|
1.59 kg / 3.51 LBS
~0 Gs
|
| 2 mm |
1.05 kg / 2.32 LBS
6 590 Gs
|
0.16 kg / 0.35 LBS
158 g / 1.5 N
|
0.95 kg / 2.09 LBS
~0 Gs
|
| 3 mm |
0.60 kg / 1.33 LBS
4 992 Gs
|
0.09 kg / 0.20 LBS
91 g / 0.9 N
|
0.54 kg / 1.20 LBS
~0 Gs
|
| 5 mm |
0.20 kg / 0.44 LBS
2 860 Gs
|
0.03 kg / 0.07 LBS
30 g / 0.3 N
|
0.18 kg / 0.39 LBS
~0 Gs
|
| 10 mm |
0.02 kg / 0.04 LBS
880 Gs
|
0.00 kg / 0.01 LBS
3 g / 0.0 N
|
0.02 kg / 0.04 LBS
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 LBS
184 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 LBS
16 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 LBS
10 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 LBS
6 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 LBS
4 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 LBS
3 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 LBS
2 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
Table 7: Protective zones (implants) - warnings
MP 5x2.7/1.2x5 Z / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 2.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.5 cm |
| Remote | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MP 5x2.7/1.2x5 Z / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
33.26 km/h
(9.24 m/s)
|
0.03 J | |
| 30 mm |
57.59 km/h
(16.00 m/s)
|
0.09 J | |
| 50 mm |
74.35 km/h
(20.65 m/s)
|
0.15 J | |
| 100 mm |
105.14 km/h
(29.21 m/s)
|
0.29 J |
Table 9: Corrosion resistance
MP 5x2.7/1.2x5 Z / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MP 5x2.7/1.2x5 Z / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 862 Mx | 8.6 µWb |
| Pc Coefficient | 0.83 | High (Stable) |
Table 11: Physics of underwater searching
MP 5x2.7/1.2x5 Z / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.75 kg | Standard |
| Water (riverbed) |
0.86 kg
(+0.11 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Warning: On a vertical wall, the magnet holds only a fraction of its nominal pull.
2. Plate thickness effect
*Thin metal sheet (e.g. computer case) drastically limits the holding force.
3. Temperature resistance
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.83
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See more proposals
Pros as well as cons of neodymium magnets.
Benefits
- They have unchanged lifting capacity, and over nearly 10 years their attraction force decreases symbolically – ~1% (in testing),
- They do not lose their magnetic properties even under close interference source,
- The use of an refined layer of noble metals (nickel, gold, silver) causes the element to look better,
- The surface of neodymium magnets generates a powerful magnetic field – this is one of their assets,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can function (depending on the form) even at a temperature of 230°C or more...
- Possibility of detailed creating as well as optimizing to specific applications,
- Versatile presence in innovative solutions – they are utilized in magnetic memories, electric motors, precision medical tools, as well as multitasking production systems.
- Thanks to efficiency per cm³, small magnets offer high operating force, occupying minimum space,
Limitations
- To avoid cracks upon strong impacts, we recommend using special steel holders. Such a solution secures the magnet and simultaneously improves its durability.
- When exposed to high temperature, neodymium magnets experience a drop in force. Often, when the temperature exceeds 80°C, their power decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- When exposed to humidity, magnets start to rust. To use them in conditions outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which secure oxidation as well as corrosion.
- Limited ability of making nuts in the magnet and complex shapes - preferred is casing - magnet mounting.
- Potential hazard resulting from small fragments of magnets are risky, when accidentally swallowed, which becomes key in the aspect of protecting the youngest. Additionally, small components of these products can be problematic in diagnostics medical when they are in the body.
- High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which can limit application in large quantities
Lifting parameters
Maximum holding power of the magnet – what affects it?
- on a plate made of mild steel, perfectly concentrating the magnetic flux
- with a thickness of at least 10 mm
- with a surface cleaned and smooth
- under conditions of gap-free contact (surface-to-surface)
- during detachment in a direction perpendicular to the plane
- in neutral thermal conditions
Practical aspects of lifting capacity – factors
- Distance – existence of any layer (paint, tape, air) acts as an insulator, which lowers power steeply (even by 50% at 0.5 mm).
- Loading method – declared lifting capacity refers to pulling vertically. When slipping, the magnet exhibits much less (often approx. 20-30% of maximum force).
- Wall thickness – thin material does not allow full use of the magnet. Part of the magnetic field passes through the material instead of generating force.
- Metal type – not every steel attracts identically. High carbon content worsen the attraction effect.
- Surface structure – the smoother and more polished the plate, the better the adhesion and stronger the hold. Roughness creates an air distance.
- Temperature influence – hot environment weakens pulling force. Exceeding the limit temperature can permanently damage the magnet.
Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under shearing force the lifting capacity is smaller. In addition, even a slight gap between the magnet’s surface and the plate reduces the holding force.
H&S for magnets
Immense force
Before use, check safety instructions. Sudden snapping can destroy the magnet or hurt your hand. Think ahead.
Demagnetization risk
Regular neodymium magnets (N-type) undergo demagnetization when the temperature surpasses 80°C. This process is irreversible.
Precision electronics
Navigation devices and smartphones are extremely sensitive to magnetism. Direct contact with a strong magnet can ruin the internal compass in your phone.
Dust explosion hazard
Machining of NdFeB material carries a risk of fire hazard. Magnetic powder reacts violently with oxygen and is difficult to extinguish.
Pinching danger
Large magnets can smash fingers instantly. Under no circumstances place your hand between two attracting surfaces.
Pacemakers
Individuals with a ICD have to keep an absolute distance from magnets. The magnetic field can interfere with the operation of the implant.
Magnets are brittle
NdFeB magnets are ceramic materials, which means they are very brittle. Impact of two magnets leads to them breaking into small pieces.
No play value
Neodymium magnets are not toys. Accidental ingestion of a few magnets can lead to them attracting across intestines, which constitutes a direct threat to life and requires immediate surgery.
Electronic devices
Do not bring magnets close to a wallet, computer, or TV. The magnetic field can permanently damage these devices and wipe information from cards.
Skin irritation risks
Nickel alert: The nickel-copper-nickel coating contains nickel. If skin irritation appears, immediately stop working with magnets and wear gloves.
