tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. All "magnets" on our website are in stock for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnet for treasure hunters F400 GOLD

Where to purchase strong magnet? Magnet holders in solid and airtight steel casing are perfect for use in difficult, demanding climate conditions, including in the rain and snow more...

magnetic holders

Holders with magnets can be used to improve production, underwater exploration, or locating space rocks from gold see more...

Enjoy delivery of your order if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 10x8 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010013

GTIN: 5906301810124

5

Diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

8 mm

Weight

4.71 g

Magnetization Direction

↑ axial

Load capacity

4.42 kg / 43.35 N

Magnetic Induction

525.10 mT

Coating

[NiCuNi] nickel

1.96 with VAT / pcs + price for transport

1.59 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.59 ZŁ
1.96 ZŁ
price from 400 pcs
1.49 ZŁ
1.83 ZŁ
price from 1600 pcs
1.38 ZŁ
1.70 ZŁ

Need advice?

Call us +48 22 499 98 98 alternatively let us know using request form the contact page.
Force as well as structure of magnetic components can be checked on our modular calculator.

Orders submitted before 14:00 will be dispatched today!

MW 10x8 / N38 - cylindrical magnet

Specification/characteristics MW 10x8 / N38 - cylindrical magnet
properties
values
Cat. no.
010013
GTIN
5906301810124
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
10 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
4.71 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
4.42 kg / 43.35 N
Magnetic Induction ~ ?
525.10 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 10x8 / N38 are magnets created of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which outperform traditional ferrite magnets. Because of their strength, they are often used in products that need powerful holding. The typical temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their resistance to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet designated MW 10x8 / N38 and a magnetic lifting capacity of 4.42 kg has a weight of only 4.71 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of gold-nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to check the site for the current information as well as offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are practical in many applications, they can also constitute certain risk. Because of their strong magnetic power, they can pull metallic objects with uncontrolled force, which can lead to crushing skin or other surfaces, especially be careful with fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strong magnets on the market. They are produced through a advanced sintering process, which involves fusing special alloys of neodymium with additional metals and then forming and thermal processing. Their unmatched magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as epoxy, to preserve them from external factors and prolong their durability. Temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
A neodymium magnet with classification N52 and N50 is a strong and powerful magnetic product shaped like a cylinder, featuring strong holding power and universal applicability. Very good price, availability, stability and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their strong magnetism, neodymium magnets have these key benefits:

  • They have constant strength, and over nearly 10 years their attraction force decreases symbolically – ~1% (in testing),
  • They remain magnetized despite exposure to magnetic surroundings,
  • Because of the brilliant layer of nickel, the component looks visually appealing,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • With the option for tailored forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Wide application in advanced technical fields – they are utilized in hard drives, electric drives, healthcare devices along with technologically developed systems,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to shocks, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and strengthens its overall robustness,
  • They lose power at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of rubber for outdoor use,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Health risk due to small fragments may arise, especially if swallowed, which is significant in the health of young users. Additionally, tiny components from these products can disrupt scanning after being swallowed,
  • Due to a complex production process, their cost is considerably higher,

Optimal lifting capacity of a neodymium magnetwhat it depends on?

The given strength of the magnet corresponds to the optimal strength, calculated in the best circumstances, that is:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with zero air gap
  • with vertical force applied
  • in normal thermal conditions

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is affected by these factors, in descending order of importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured using a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under shearing force the holding force is lower. In addition, even a minimal clearance {between} the magnet and the plate lowers the holding force.

Precautions

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.

 It is important to keep neodymium magnets out of reach from youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnetic are extremely delicate, they easily break as well as can crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Safety rules!

So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98