tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our proposal. Practically all "magnets" in our store are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnets for treasure hunters F300 GOLD

Where to buy very strong magnet? Magnet holders in airtight, solid enclosure are ideally suited for use in variable and difficult weather, including during snow and rain more information...

magnetic holders

Holders with magnets can be applied to facilitate production, underwater exploration, or searching for space rocks made of ore more...

Order is always shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 10x8 / N38 - neodymium magnet

cylindrical magnet

catalog number 010013

GTIN: 5906301810124

5.0

diameter Ø

10 mm [±0,1 mm]

height

8 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

4.42 kg / 43.35 N

magnetic induction ~

525.10 mT / 5,251 Gs

max. temperature

≤ 80 °C

2.03 gross price (including VAT) / pcs +

1.65 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
1.65 ZŁ
2.03 ZŁ
price from 364 pcs
1.55 ZŁ
1.91 ZŁ
price from 1334 pcs
1.45 ZŁ
1.78 ZŁ

Want to talk about magnets?

Call us tel: +48 22 499 98 98 or write via form on our website. You can check the lifting capacity and the shape of magnet in our power calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 10x8 / N38 ↑ axial

Characteristics: cylindrical magnet 10x8 / N38 ↑ axial
Properties
Values
catalog number
010013
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
10 mm [±0,1 mm]
height
8 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
4.42 kg / 43.35 N
magnetic induction ~ ?
525.10 mT / 5,251 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
4.71 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets i.e. MW 10x8 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which outperform traditional iron magnets. Thanks to their power, they are frequently employed in devices that need powerful holding. The standard temperature resistance of such magnets is 80°C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their resistance to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet named MW 10x8 / N38 and a magnetic lifting capacity of 4.42 kg has a weight of only 4.71 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of silver to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the site for the current information as well as promotions, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are very practical in various applications, they can also pose certain dangers. Due to their significant magnetic power, they can attract metallic objects with significant force, which can lead to crushing skin as well as other materials, especially hands. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. Generally, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strongest available magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with other metals and then shaping and heat treating. Their powerful magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as silver, to protect them from environmental factors and prolong their durability. Temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.

Recommended articles for purchase

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After about 10 years, their strength decreases by only ~1% (theoretically),
  • They are extremely resistant to demagnetization by external magnetic sources,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
  • Wide application in modern technologies – find application in HDD drives, electric motors, medical equipment and various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard to health from tiny fragments of magnets can be dangerous, when accidentally ingested, which becomes significant in the context of children's health. It's also worth noting that miniscule components of these magnets can be problematic in medical diagnosis in case of swallowing.

Be Cautious with Neodymium Magnets

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnets are extremely fragile, resulting in breaking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets may crack or alternatively crumble with uncontrolled connecting to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

  Neodymium magnets should not be in the vicinity children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98