tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. All magnesy neodymowe on our website are available for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnet for treasure hunters F200 GOLD

Where to buy very strong magnet? Holders with magnets in airtight and durable enclosure are excellent for use in challenging weather conditions, including snow and rain see...

magnets with holders

Holders with magnets can be used to improve production, exploring underwater areas, or locating meteors made of ore see...

Shipping is shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 10x8 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010013

GTIN: 5906301810124

5

Diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

8 mm

Weight

4.71 g

Magnetization Direction

↑ axial

Load capacity

4.42 kg / 43.35 N

Magnetic Induction

525.10 mT

Coating

[NiCuNi] nickel

1.96 with VAT / pcs + price for transport

1.59 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.59 ZŁ
1.96 ZŁ
price from 378 pcs
1.59 ZŁ
1.96 ZŁ
price from 1573 pcs
1.59 ZŁ
1.96 ZŁ

Do you have questions?

Call us +48 22 499 98 98 alternatively contact us via request form the contact section.
Specifications as well as structure of a magnet can be reviewed on our magnetic mass calculator.

Same-day shipping for orders placed before 14:00.

MW 10x8 / N38 - cylindrical magnet

Specification/characteristics MW 10x8 / N38 - cylindrical magnet
properties
values
Cat. no.
010013
GTIN
5906301810124
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
10 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
4.71 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
4.42 kg / 43.35 N
Magnetic Induction ~ ?
525.10 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 10x8 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their extremely powerful magnetic properties, which outperform ordinary iron magnets. Because of their power, they are often employed in products that require strong adhesion. The standard temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet with the designation MW 10x8 / N38 and a magnetic strength 4.42 kg has a weight of only 4.71 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of silver to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the website for the latest information as well as promotions, and before visiting, please call.
Although, cylindrical neodymium magnets are useful in many applications, they can also constitute certain risk. Due to their strong magnetic power, they can pull metallic objects with great force, which can lead to damaging skin and other surfaces, especially hands. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. In short, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the very strong magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with additional metals and then forming and heat treating. Their amazing magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as gold, to protect them from external factors and extend their lifespan. Temperatures exceeding 130°C can result in a reduction of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical neodymium magnet with classification N52 and N50 is a strong and extremely powerful metallic component shaped like a cylinder, featuring strong holding power and broad usability. Very good price, fast shipping, ruggedness and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • Their strength is maintained, and after approximately 10 years, it drops only by ~1% (theoretically),
  • They show strong resistance to demagnetization from external field exposure,
  • The use of a polished nickel surface provides a smooth finish,
  • They have exceptional magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • The ability for precise shaping or adjustment to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Key role in cutting-edge sectors – they are utilized in HDDs, electromechanical systems, medical equipment along with sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them ideal in compact constructions

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage while also strengthens its overall durability,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, it's best to use waterproof types made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing fine shapes directly in the magnet,
  • Possible threat linked to microscopic shards may arise, in case of ingestion, which is notable in the family environments. Furthermore, miniature parts from these assemblies can complicate medical imaging once in the system,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Exercise Caution with Neodymium Magnets

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnetic are especially fragile, which leads to their breakage.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when attract. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Pay attention!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98