MW 10x8 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010013
GTIN: 5906301810124
Diameter Ø [±0,1 mm]
10 mm
Height [±0,1 mm]
8 mm
Weight
4.71 g
Magnetization Direction
↑ axial
Load capacity
4.42 kg / 43.35 N
Magnetic Induction
525.10 mT
Coating
[NiCuNi] nickel
1.96 ZŁ with VAT / pcs + price for transport
1.59 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Call us now
+48 888 99 98 98
or get in touch using
our online form
the contact page.
Specifications as well as form of magnetic components can be calculated on our
magnetic calculator.
Order by 14:00 and we’ll ship today!
MW 10x8 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of gold-nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as gold, to shield them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their consistent power, neodymium magnets have these key benefits:
- They have unchanged lifting capacity, and over around ten years their attraction force decreases symbolically – ~1% (in testing),
- They are extremely resistant to demagnetization caused by external magnetic fields,
- Thanks to the polished finish and gold coating, they have an aesthetic appearance,
- They possess strong magnetic force measurable at the magnet’s surface,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for precise shaping or adjustment to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
- Wide application in advanced technical fields – they serve a purpose in hard drives, electric motors, healthcare devices along with other advanced devices,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to external force, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall resistance,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to moisture can degrade. Therefore, for outdoor applications, we recommend waterproof types made of rubber,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
- Potential hazard due to small fragments may arise, when consumed by mistake, which is crucial in the family environments. Additionally, small elements from these products may interfere with diagnostics once in the system,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Maximum lifting capacity of the magnet – what contributes to it?
The given strength of the magnet represents the optimal strength, calculated in the best circumstances, namely:
- with mild steel, serving as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- under perpendicular detachment force
- at room temperature
Magnet lifting force in use – key factors
The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet and the plate lowers the lifting capacity.
Exercise Caution with Neodymium Magnets
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Neodymium magnets are especially delicate, resulting in shattering.
Neodymium magnets are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.
Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a significant injury may occur. Depending on how large the neodymium magnets are, they can lead to a cut or a fracture.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Caution!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.