MPL 3x3x2 / N38 - lamellar magnet
lamellar magnet
Catalog no 020147
GTIN/EAN: 5906301811534
length
3 mm [±0,1 mm]
Width
3 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
0.13 g
Magnetization Direction
↑ axial
Load capacity
0.36 kg / 3.49 N
Magnetic Induction
472.94 mT / 4729 Gs
Coating
[NiCuNi] Nickel
0.1722 ZŁ with VAT / pcs + price for transport
0.1400 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 888 99 98 98
otherwise drop us a message using
form
the contact section.
Specifications as well as structure of neodymium magnets can be tested using our
power calculator.
Same-day shipping for orders placed before 14:00.
Detailed specification - MPL 3x3x2 / N38 - lamellar magnet
Specification / characteristics - MPL 3x3x2 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020147 |
| GTIN/EAN | 5906301811534 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 3 mm [±0,1 mm] |
| Width | 3 mm [±0,1 mm] |
| Height | 2 mm [±0,1 mm] |
| Weight | 0.13 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.36 kg / 3.49 N |
| Magnetic Induction ~ ? | 472.94 mT / 4729 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the assembly - data
The following information are the direct effect of a physical calculation. Results were calculated on algorithms for the class Nd2Fe14B. Operational performance might slightly differ. Treat these calculations as a reference point for designers.
Table 1: Static pull force (pull vs distance) - interaction chart
MPL 3x3x2 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
4719 Gs
471.9 mT
|
0.36 kg / 0.79 lbs
360.0 g / 3.5 N
|
low risk |
| 1 mm |
2223 Gs
222.3 mT
|
0.08 kg / 0.18 lbs
79.9 g / 0.8 N
|
low risk |
| 2 mm |
966 Gs
96.6 mT
|
0.02 kg / 0.03 lbs
15.1 g / 0.1 N
|
low risk |
| 3 mm |
468 Gs
46.8 mT
|
0.00 kg / 0.01 lbs
3.5 g / 0.0 N
|
low risk |
| 5 mm |
153 Gs
15.3 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
low risk |
| 10 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 15 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 20 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
Table 2: Slippage load (wall)
MPL 3x3x2 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
72.0 g / 0.7 N
|
| 1 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MPL 3x3x2 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.11 kg / 0.24 lbs
108.0 g / 1.1 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.07 kg / 0.16 lbs
72.0 g / 0.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.18 kg / 0.40 lbs
180.0 g / 1.8 N
|
Table 4: Steel thickness (saturation) - power losses
MPL 3x3x2 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 1 mm |
|
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| 2 mm |
|
0.18 kg / 0.40 lbs
180.0 g / 1.8 N
|
| 3 mm |
|
0.27 kg / 0.60 lbs
270.0 g / 2.6 N
|
| 5 mm |
|
0.36 kg / 0.79 lbs
360.0 g / 3.5 N
|
| 10 mm |
|
0.36 kg / 0.79 lbs
360.0 g / 3.5 N
|
| 11 mm |
|
0.36 kg / 0.79 lbs
360.0 g / 3.5 N
|
| 12 mm |
|
0.36 kg / 0.79 lbs
360.0 g / 3.5 N
|
Table 5: Thermal stability (stability) - resistance threshold
MPL 3x3x2 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.36 kg / 0.79 lbs
360.0 g / 3.5 N
|
OK |
| 40 °C | -2.2% |
0.35 kg / 0.78 lbs
352.1 g / 3.5 N
|
OK |
| 60 °C | -4.4% |
0.34 kg / 0.76 lbs
344.2 g / 3.4 N
|
OK |
| 80 °C | -6.6% |
0.34 kg / 0.74 lbs
336.2 g / 3.3 N
|
|
| 100 °C | -28.8% |
0.26 kg / 0.57 lbs
256.3 g / 2.5 N
|
Table 6: Two magnets (repulsion) - field collision
MPL 3x3x2 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.24 kg / 2.72 lbs
5 677 Gs
|
0.19 kg / 0.41 lbs
185 g / 1.8 N
|
N/A |
| 1 mm |
0.63 kg / 1.38 lbs
6 725 Gs
|
0.09 kg / 0.21 lbs
94 g / 0.9 N
|
0.56 kg / 1.24 lbs
~0 Gs
|
| 2 mm |
0.27 kg / 0.60 lbs
4 447 Gs
|
0.04 kg / 0.09 lbs
41 g / 0.4 N
|
0.25 kg / 0.54 lbs
~0 Gs
|
| 3 mm |
0.12 kg / 0.26 lbs
2 903 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.23 lbs
~0 Gs
|
| 5 mm |
0.02 kg / 0.05 lbs
1 324 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 10 mm |
0.00 kg / 0.00 lbs
306 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
52 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (electronics) - precautionary measures
MPL 3x3x2 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 2.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 1.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 1.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.0 cm |
| Car key | 50 Gs (5.0 mT) | 1.0 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Collisions (cracking risk) - collision effects
MPL 3x3x2 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
53.07 km/h
(14.74 m/s)
|
0.01 J | |
| 30 mm |
91.92 km/h
(25.53 m/s)
|
0.04 J | |
| 50 mm |
118.67 km/h
(32.96 m/s)
|
0.07 J | |
| 100 mm |
167.83 km/h
(46.62 m/s)
|
0.14 J |
Table 9: Coating parameters (durability)
MPL 3x3x2 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MPL 3x3x2 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 429 Mx | 4.3 µWb |
| Pc Coefficient | 0.66 | High (Stable) |
Table 11: Submerged application
MPL 3x3x2 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.36 kg | Standard |
| Water (riverbed) |
0.41 kg
(+0.05 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Note: On a vertical surface, the magnet holds only a fraction of its max power.
2. Efficiency vs thickness
*Thin metal sheet (e.g. computer case) drastically limits the holding force.
3. Thermal stability
*For standard magnets, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.66
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View also deals
Pros as well as cons of rare earth magnets.
Benefits
- They virtually do not lose strength, because even after 10 years the performance loss is only ~1% (in laboratory conditions),
- Magnets effectively defend themselves against loss of magnetization caused by external fields,
- By using a smooth coating of nickel, the element presents an modern look,
- The surface of neodymium magnets generates a powerful magnetic field – this is a key feature,
- Due to their durability and thermal resistance, neodymium magnets can operate (depending on the shape) even at high temperatures reaching 230°C or more...
- Possibility of custom machining as well as adjusting to complex needs,
- Universal use in advanced technology sectors – they are commonly used in computer drives, brushless drives, medical equipment, also multitasking production systems.
- Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications
Limitations
- Brittleness is one of their disadvantages. Upon strong impact they can fracture. We recommend keeping them in a special holder, which not only secures them against impacts but also raises their durability
- When exposed to high temperature, neodymium magnets suffer a drop in power. Often, when the temperature exceeds 80°C, their power decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- They rust in a humid environment. For use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- We suggest cover - magnetic mechanism, due to difficulties in realizing threads inside the magnet and complex forms.
- Potential hazard to health – tiny shards of magnets pose a threat, when accidentally swallowed, which gains importance in the aspect of protecting the youngest. Additionally, tiny parts of these devices are able to disrupt the diagnostic process medical after entering the body.
- Due to expensive raw materials, their price exceeds standard values,
Lifting parameters
Detachment force of the magnet in optimal conditions – what it depends on?
- using a sheet made of mild steel, acting as a magnetic yoke
- possessing a thickness of min. 10 mm to ensure full flux closure
- with a plane free of scratches
- under conditions of gap-free contact (surface-to-surface)
- for force applied at a right angle (pull-off, not shear)
- at temperature approx. 20 degrees Celsius
What influences lifting capacity in practice
- Space between magnet and steel – even a fraction of a millimeter of distance (caused e.g. by veneer or dirt) significantly weakens the magnet efficiency, often by half at just 0.5 mm.
- Loading method – catalog parameter refers to detachment vertically. When attempting to slide, the magnet holds much less (typically approx. 20-30% of maximum force).
- Metal thickness – the thinner the sheet, the weaker the hold. Magnetic flux passes through the material instead of converting into lifting capacity.
- Steel grade – the best choice is pure iron steel. Stainless steels may generate lower lifting capacity.
- Surface quality – the smoother and more polished the surface, the better the adhesion and stronger the hold. Unevenness creates an air distance.
- Temperature influence – hot environment reduces magnetic field. Exceeding the limit temperature can permanently demagnetize the magnet.
Lifting capacity was assessed with the use of a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under attempts to slide the magnet the lifting capacity is smaller. In addition, even a small distance between the magnet’s surface and the plate lowers the holding force.
H&S for magnets
Keep away from computers
Equipment safety: Strong magnets can damage data carriers and sensitive devices (heart implants, medical aids, timepieces).
Phone sensors
An intense magnetic field interferes with the functioning of magnetometers in smartphones and navigation systems. Do not bring magnets near a smartphone to prevent breaking the sensors.
Heat sensitivity
Standard neodymium magnets (N-type) undergo demagnetization when the temperature exceeds 80°C. This process is irreversible.
Fire warning
Machining of NdFeB material poses a fire hazard. Magnetic powder reacts violently with oxygen and is difficult to extinguish.
Do not underestimate power
Be careful. Neodymium magnets attract from a distance and snap with huge force, often quicker than you can react.
Skin irritation risks
Medical facts indicate that nickel (standard magnet coating) is a potent allergen. If your skin reacts to metals, refrain from direct skin contact and select coated magnets.
Bodily injuries
Large magnets can crush fingers instantly. Under no circumstances put your hand between two attracting surfaces.
Risk of cracking
Neodymium magnets are sintered ceramics, which means they are prone to chipping. Collision of two magnets leads to them breaking into small pieces.
Product not for children
NdFeB magnets are not toys. Accidental ingestion of several magnets may result in them pinching intestinal walls, which constitutes a direct threat to life and necessitates urgent medical intervention.
Warning for heart patients
Individuals with a heart stimulator should maintain an safe separation from magnets. The magnetism can interfere with the operation of the implant.
