tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. All "magnets" in our store are in stock for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnets for water searching F300 GOLD

Where to buy strong neodymium magnet? Holders with magnets in airtight and durable enclosure are perfect for use in challenging weather conditions, including snow and rain read...

magnetic holders

Holders with magnets can be used to improve manufacturing, exploring underwater areas, or finding meteors made of ore check...

Shipping is always shipped on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGZ 16x13x5 [M4] GZ / N38 - magnetic holder external thread

magnetic holder external thread

Catalog no 190321

GTIN: 5906301813804

5

Diameter Ø [±0,1 mm]

16 mm

Height [±0,1 mm]

13 mm

Height [±0,1 mm]

5 mm

Weight

7 g

Load capacity

5 kg / 49.03 N

3.89 with VAT / pcs + price for transport

3.16 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.16 ZŁ
3.89 ZŁ
price from 150 pcs
2.97 ZŁ
3.65 ZŁ
price from 300 pcs
2.78 ZŁ
3.42 ZŁ

Want to negotiate?

Call us now +48 22 499 98 98 or let us know through contact form the contact form page.
Weight along with shape of neodymium magnets can be reviewed using our force calculator.

Same-day shipping for orders placed before 14:00.

UMGZ 16x13x5 [M4] GZ / N38 - magnetic holder external thread

Specification/characteristics UMGZ 16x13x5 [M4] GZ / N38 - magnetic holder external thread
properties
values
Cat. no.
190321
GTIN
5906301813804
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
16 mm [±0,1 mm]
Height
13 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
7 g [±0,1 mm]
Load capacity ~ ?
5 kg / 49.03 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Mounts with built-in neodymium magnets featuring an external thread are modern solutions, applied across various fields, including automotive, light industry, or assembly technology. Their design is based on a strong NdFeB magnet, embedded in steel housing coated with zinc and nickel. Threaded pin ranging from M3–M10 enables installation onto compatible surfaces, which enables to screw in various components. With the help of a focused magnetic field, such mounts provide a pulling strength from 3 to 68 kg, depending on. Applications of the holders include not only industrial operations and home installations. Some versions feature a protective layer, which protects surfaces from scratches and increases grip. Note, however, that NdFeB magnets are brittle and may break under excessive tightening. Careful handling is advised, and holders should be kept away from electronics. To ensure reliability, one should opt for models from trusted manufacturers.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their tremendous field intensity, neodymium magnets offer the following advantages:

  • They have unchanged lifting capacity, and over around 10 years their performance decreases symbolically – ~1% (in testing),
  • They protect against demagnetization induced by surrounding magnetic influence very well,
  • The use of a polished nickel surface provides a smooth finish,
  • Magnetic induction on the surface of these magnets is very strong,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • The ability for precise shaping or customization to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
  • Significant impact in modern technologies – they are utilized in hard drives, electric motors, healthcare devices along with sophisticated instruments,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They can break when subjected to a heavy impact. If the magnets are exposed to external force, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and enhances its overall resistance,
  • They lose strength at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a damp environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is not feasible,
  • Potential hazard linked to microscopic shards may arise, when consumed by mistake, which is crucial in the health of young users. Moreover, small elements from these products have the potential to complicate medical imaging once in the system,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Maximum lifting force for a neodymium magnet – what contributes to it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, measured in ideal conditions, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • in conditions of no clearance
  • under perpendicular detachment force
  • at room temperature

Practical aspects of lifting capacity – factors

Practical lifting force is dependent on elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, in contrast under attempts to slide the magnet the holding force is lower. In addition, even a slight gap {between} the magnet and the plate lowers the load capacity.

Handle Neodymium Magnets Carefully

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will jump and also clash together within a radius of several to almost 10 cm from each other.

 Keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Magnets made of neodymium are particularly fragile, which leads to damage.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Caution!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98