e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our store's offer. Practically all magnesy neodymowe on our website are in stock for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F200 GOLD

Where to purchase very strong magnet? Magnet holders in airtight, solid enclosure are excellent for use in challenging weather conditions, including snow and rain see...

magnetic holders

Magnetic holders can be used to improve manufacturing, exploring underwater areas, or locating meteors made of ore see...

We promise to ship ordered magnets if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 14.9x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010023

GTIN: 5906301810223

5

Diameter Ø [±0,1 mm]

14.9 mm

Height [±0,1 mm]

10 mm

Weight

13.08 g

Magnetization Direction

→ diametrical

Load capacity

8.24 kg / 80.81 N

Magnetic Induction

496.78 mT

Coating

[NiCuNi] nickel

8.24 with VAT / pcs + price for transport

6.70 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
6.70 ZŁ
8.24 ZŁ
price from 100 pcs
6.30 ZŁ
7.75 ZŁ
price from 400 pcs
5.90 ZŁ
7.25 ZŁ

Need advice?

Call us +48 22 499 98 98 or drop us a message through form our website.
Specifications and structure of magnets can be estimated with our power calculator.

Orders submitted before 14:00 will be dispatched today!

MW 14.9x10 / N38 - cylindrical magnet

Specification/characteristics MW 14.9x10 / N38 - cylindrical magnet
properties
values
Cat. no.
010023
GTIN
5906301810223
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
14.9 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
13.08 g [±0,1 mm]
Magnetization Direction
→ diametrical
Load capacity ~ ?
8.24 kg / 80.81 N
Magnetic Induction ~ ?
496.78 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 14.9x10 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their extremely powerful magnetic properties, which outperform ordinary iron magnets. Thanks to their power, they are frequently used in devices that require strong adhesion. The standard temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is as well very popular among neodymium magnets. The magnet with the designation MW 14.9x10 / N38 with a magnetic lifting capacity of 8.24 kg has a weight of only 13.08 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of gold to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the site for the current information and promotions, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very practical in many applications, they can also pose certain risk. Because of their strong magnetic power, they can pull metallic objects with uncontrolled force, which can lead to damaging skin and other surfaces, especially be careful with fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the strong magnets on the market. They are produced through a complicated sintering process, which involves fusing special alloys of neodymium with other metals and then shaping and thermal processing. Their powerful magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as gold, to preserve them from external factors and extend their lifespan. Temperatures exceeding 130°C can result in a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical magnet with classification N50 and N52 is a strong and powerful metal object designed as a cylinder, that offers high force and versatile application. Good price, 24h delivery, stability and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They retain their attractive force for almost ten years – the drop is just ~1% (based on simulations),
  • They show strong resistance to demagnetization from external field exposure,
  • By applying a bright layer of silver, the element gains a clean look,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for precise shaping or customization to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
  • Important function in advanced technical fields – they find application in hard drives, rotating machines, medical equipment along with sophisticated instruments,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to shocks, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and additionally strengthens its overall durability,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create internal holes in the magnet – the use of a housing is recommended,
  • Possible threat linked to microscopic shards may arise, in case of ingestion, which is crucial in the health of young users. Furthermore, tiny components from these devices may hinder health screening once in the system,
  • Due to expensive raw materials, their cost is considerably higher,

Best holding force of the magnet in ideal parameterswhat contributes to it?

The given strength of the magnet means the optimal strength, assessed in ideal conditions, namely:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Magnet lifting force in use – key factors

Practical lifting force is dependent on factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured using a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under attempts to slide the magnet the holding force is lower. Moreover, even a minimal clearance {between} the magnet and the plate decreases the load capacity.

Handle Neodymium Magnets with Caution

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are highly fragile, they easily break as well as can become damaged.

Neodymium magnets are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when attract. Depending on how massive the neodymium magnets are, they can lead to a cut or a fracture.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.

Be careful!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98