e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our proposal. Practically all "neodymium magnets" on our website are available for immediate purchase (see the list). Check out the magnet price list for more details see the magnet price list

Magnet for searching F400 GOLD

Where to buy strong magnet? Magnet holders in airtight and durable steel casing are perfect for use in difficult weather, including snow and rain check...

magnets with holders

Holders with magnets can be applied to facilitate production, exploring underwater areas, or locating space rocks made of metal more...

We promise to ship ordered magnets if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 12x8 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010022

GTIN: 5906301810216

5

Diameter Ø [±0,1 mm]

12 mm

Height [±0,1 mm]

8 mm

Weight

6.79 g

Magnetization Direction

↑ axial

Load capacity

5.31 kg / 52.07 N

Magnetic Induction

495.50 mT

Coating

[NiCuNi] nickel

2.47 with VAT / pcs + price for transport

2.01 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2.01 ZŁ
2.47 ZŁ
price from 300 pcs
1.889 ZŁ
2.32 ZŁ
price from 1250 pcs
1.769 ZŁ
2.18 ZŁ

Not sure where to buy?

Give us a call +48 888 99 98 98 alternatively get in touch using contact form the contact page.
Weight along with form of magnetic components can be tested on our our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

MW 12x8 / N38 - cylindrical magnet

Specification/characteristics MW 12x8 / N38 - cylindrical magnet
properties
values
Cat. no.
010022
GTIN
5906301810216
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
12 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
6.79 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
5.31 kg / 52.07 N
Magnetic Induction ~ ?
495.50 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 12x8 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their extremely powerful magnetic properties, which exceed traditional ferrite magnets. Because of their power, they are frequently used in devices that need powerful holding. The standard temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is as well one of the most popular among neodymium magnets. The magnet with the designation MW 12x8 / N38 and a magnetic strength 5.31 kg has a weight of only 6.79 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to check the site for the current information as well as promotions, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are useful in various applications, they can also constitute certain dangers. Due to their strong magnetic power, they can pull metallic objects with uncontrolled force, which can lead to crushing skin or other materials, especially hands. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strong magnets on the market. They are produced through a complicated sintering process, which involves fusing special alloys of neodymium with other metals and then forming and heat treating. Their amazing magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as gold, to preserve them from external factors and extend their lifespan. High temperatures exceeding 130°C can result in a loss of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic properties.
A cylindrical neodymium magnet N52 and N50 is a strong and extremely powerful metal object in the form of a cylinder, featuring high force and broad usability. Good price, 24h delivery, resistance and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They do not lose their magnetism, even after around 10 years – the loss of lifting capacity is only ~1% (theoretically),
  • They show superior resistance to demagnetization from external field exposure,
  • By applying a bright layer of gold, the element gains a sleek look,
  • They have exceptional magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • With the option for tailored forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Important function in new technology industries – they are used in computer drives, electric motors, medical equipment and sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which allows for use in compact constructions

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to mechanical hits, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and additionally strengthens its overall durability,
  • They lose field intensity at high temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
  • Safety concern related to magnet particles may arise, especially if swallowed, which is notable in the protection of children. It should also be noted that small elements from these devices have the potential to hinder health screening when ingested,
  • In cases of tight budgets, neodymium magnet cost may be a barrier,

Highest magnetic holding forcewhat it depends on?

The given holding capacity of the magnet corresponds to the highest holding force, measured in ideal conditions, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a polished side
  • in conditions of no clearance
  • under perpendicular detachment force
  • at room temperature

What influences lifting capacity in practice

In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, in contrast under parallel forces the holding force is lower. Additionally, even a slight gap {between} the magnet’s surface and the plate lowers the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets are characterized by being fragile, which can cause them to become damaged.

Neodymium magnets are fragile as well as will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Magnets may crack or crumble with careless connecting to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them extremely firmly.

 It is important to keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Caution!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98