MW 12x6 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010021
GTIN: 5906301810209
Diameter Ø [±0,1 mm]
12 mm
Height [±0,1 mm]
6 mm
Weight
5.09 g
Magnetization Direction
↑ axial
Load capacity
3.98 kg / 39.03 N
Magnetic Induction
437.99 mT
Coating
[NiCuNi] nickel
1.89 ZŁ with VAT / pcs + price for transport
1.54 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Call us now
+48 22 499 98 98
or contact us via
our online form
the contact form page.
Specifications as well as appearance of magnetic components can be reviewed with our
magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
MW 12x6 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of silver to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as nickel, to protect them from external factors and extend their lifespan. High temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their notable magnetism, neodymium magnets have these key benefits:
- They have unchanged lifting capacity, and over around 10 years their attraction force decreases symbolically – ~1% (in testing),
- Their ability to resist magnetic interference from external fields is among the best,
- Because of the lustrous layer of silver, the component looks high-end,
- The outer field strength of the magnet shows remarkable magnetic properties,
- These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to profile),
- The ability for custom shaping as well as adjustment to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
- Significant impact in cutting-edge sectors – they find application in HDDs, electromechanical systems, diagnostic apparatus or even sophisticated instruments,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to mechanical hits, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and strengthens its overall resistance,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to moisture can corrode. Therefore, for outdoor applications, we suggest waterproof types made of coated materials,
- Limited ability to create internal holes in the magnet – the use of a mechanical support is recommended,
- Possible threat from tiny pieces may arise, when consumed by mistake, which is notable in the health of young users. Additionally, miniature parts from these devices might hinder health screening once in the system,
- In cases of tight budgets, neodymium magnet cost may not be economically viable,
Exercise Caution with Neodymium Magnets
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets should not be in the vicinity children.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnetic are extremely fragile, leading to shattering.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when attract. Magnets, depending on their size, can even cut off a finger or there can be a significant pressure or a fracture.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Pay attention!
So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.