tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. Practically all "neodymium magnets" on our website are available for immediate delivery (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F300 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in airtight, solid enclosure are ideally suited for use in variable and difficult weather, including in the rain and snow more information...

magnetic holders

Holders with magnets can be applied to enhance manufacturing, underwater discoveries, or finding space rocks from gold more information...

We promise to ship your order on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 850x180x70 [4x M8] - magnetic beam

magnetic beam

Catalog no 090224

GTIN: 5906301812593

5

length [±0,1 mm]

850 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

70 mm

Weight

54590 g

7729.93 with VAT / pcs + price for transport

6284.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
6284.50 ZŁ
7729.93 ZŁ
price from 5 pcs
5907.43 ZŁ
7266.14 ZŁ

Need help making a decision?

Give us a call +48 22 499 98 98 alternatively contact us through our online form the contact form page.
Lifting power along with shape of magnetic components can be analyzed on our online calculation tool.

Order by 14:00 and we’ll ship today!

BM 850x180x70 [4x M8] - magnetic beam

Specification/characteristics BM 850x180x70 [4x M8] - magnetic beam
properties
values
Cat. no.
090224
GTIN
5906301812593
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
850 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
70 mm [±0,1 mm]
Weight
54590 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic beams are components mounted above conveyor systems, which use neodymium magnets to capture unwanted iron elements. Metallic elements float up and attach to the bottom surface of the beam. Magnetic beams are widely used in recycling, mineral raw materials and other industrial sectors.
The selection of the magnetic beam depends on the width of the conveyor and the cross-section of the beam. A larger cross-section allows the beam to be suspended higher above the belt. For instance, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, while for a layer of material over 8 cm, a larger beam is required. Custom-sized beams are available upon request.
The magnetic beam works due to the use of neodymium magnets, which create a field capable of attracting iron contaminants. This causes all metals in the transport to be captured and stopped. The beam can be mounted above the conveyor or set at an angle as a chute separator. The stainless steel housing protects the magnets, the device is durable and reliable in harsh industrial conditions.
These devices are used for removing any iron contaminants, such as balls with a diameter of 5-10 mm, M5-M10 nuts, metal items, such as nails or keys. The magnetic field strength of the beam allows for capturing metals from a distance of up to 120 mm. These devices are indispensable in many industrial sectors where removing iron contaminants is critical.
Magnetic beams are indispensable in industry due to their effectiveness in metal separation, especially in industrial sectors requiring precise contaminant separation. Equipped with neodymium magnets, these beams ensure high reliability and work efficiency. Moreover, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their superior magnetism, neodymium magnets have these key benefits:

  • Their strength remains stable, and after approximately ten years, it drops only by ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is among the best,
  • In other words, due to the metallic silver coating, the magnet obtains an stylish appearance,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for accurate shaping and adjustment to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
  • Key role in modern technologies – they are utilized in computer drives, electric motors, clinical machines and sophisticated instruments,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally strengthens its overall durability,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
  • Health risk linked to microscopic shards may arise, in case of ingestion, which is crucial in the context of child safety. It should also be noted that miniature parts from these devices can interfere with diagnostics once in the system,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Maximum magnetic pulling forcewhat it depends on?

The given holding capacity of the magnet means the highest holding force, measured in ideal conditions, that is:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a polished side
  • with no separation
  • in a perpendicular direction of force
  • in normal thermal conditions

Key elements affecting lifting force

Practical lifting force is dependent on factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under parallel forces the holding force is lower. Additionally, even a slight gap {between} the magnet and the plate reduces the holding force.

Handle Neodymium Magnets Carefully

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are the most powerful magnets ever invented. Their power can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Neodymium magnetic are characterized by being fragile, which can cause them to crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

In the case of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Pay attention!

In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98