tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. Practically all "magnets" in our store are in stock for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnet for water searching F300 GOLD

Where to buy very strong neodymium magnet? Magnetic holders in airtight and durable enclosure are perfect for use in difficult weather conditions, including during rain and snow see...

magnetic holders

Magnetic holders can be used to facilitate manufacturing, underwater exploration, or locating meteorites made of metal read...

We promise to ship ordered magnets on the same day by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 850x180x70 [4x M8] - magnetic beam

magnetic beam

Catalog no 090224

GTIN: 5906301812593

5

length [±0,1 mm]

850 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

70 mm

Weight

54590 g

7 729.93 with VAT / pcs + price for transport

6 284.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
6 284.50 ZŁ
7 729.93 ZŁ
price from 5 pcs
5 907.43 ZŁ
7 266.14 ZŁ

Not sure where to buy?

Pick up the phone and ask +48 888 99 98 98 if you prefer let us know by means of request form our website.
Parameters as well as appearance of a magnet can be analyzed on our magnetic calculator.

Same-day processing for orders placed before 14:00.

BM 850x180x70 [4x M8] - magnetic beam

Specification/characteristics BM 850x180x70 [4x M8] - magnetic beam
properties
values
Cat. no.
090224
GTIN
5906301812593
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
850 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
70 mm [±0,1 mm]
Weight
54590 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

A magnetic beam is a device mounted above conveyor belts, which use neodymium magnets to separate iron contaminants from the transported material. Any metal parts are attracted to the underside of the beam. Magnetic beams are widely used in recycling, mineral raw materials and other industrial sectors.
The dimensions of the magnetic beam are tailored to the width of the belt and the magnetic field range. The larger the cross-section of the beam, the greater the magnetic field range. For instance, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, whereas for a layer of material over 8 cm, a larger beam is required. We also manufacture magnetic beams made to order according to customer requirements.
The magnetic beam works due to the use of neodymium magnets, which generate a magnetic field attracting metal elements. This causes all metals in the transport to be captured and stopped. The beam can be mounted above the conveyor or set at an angle as a chute separator. The stainless steel housing protects the magnets, ensuring long-lasting and effective operation in various industries.
These devices are used for removing any iron contaminants, such as metal balls, M5-M10 nuts, iron nails. The range of the beam's action depends on its magnetic parameters and cross-section. Thanks to this, magnetic beams are effective in metal separation in industries such as recycling, food processing, and plastic processing.
Their application allows for the effective removal of iron contaminants from transported materials, which is crucial in industries such as food processing, recycling, plastic processing, and mineral raw materials. Equipped with neodymium magnets, these beams ensure high reliability and work efficiency. Additionally, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
  • They remain magnetized despite exposure to magnetic noise,
  • Thanks to the polished finish and gold coating, they have an visually attractive appearance,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
  • The ability for accurate shaping as well as adjustment to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
  • Important function in new technology industries – they find application in computer drives, electric motors, healthcare devices along with technologically developed systems,
  • Thanks to their power density, small magnets offer high magnetic performance, with minimal size,

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to external force, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall resistance,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of synthetic coating for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing fine shapes directly in the magnet,
  • Potential hazard linked to microscopic shards may arise, in case of ingestion, which is significant in the health of young users. Furthermore, minuscule fragments from these magnets can hinder health screening once in the system,
  • In cases of mass production, neodymium magnet cost may not be economically viable,

Breakaway strength of the magnet in ideal conditionswhat contributes to it?

The given lifting capacity of the magnet represents the maximum lifting force, calculated in a perfect environment, namely:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • at room temperature

Magnet lifting force in use – key factors

Practical lifting force is dependent on elements, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under a perpendicular pulling force, in contrast under shearing force the lifting capacity is smaller. Additionally, even a small distance {between} the magnet’s surface and the plate reduces the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Magnets made of neodymium are delicate and can easily crack and shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can surprise you at first.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If have a finger between or on the path of attracting magnets, there may be a severe cut or even a fracture.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

  Magnets are not toys, youngest should not play with them.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Safety rules!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98