tel: +48 22 499 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our store's offer. All "neodymium magnets" on our website are in stock for immediate delivery (check the list). See the magnet pricing for more details check the magnet price list

Magnets for searching F300 GOLD

Where to purchase very strong magnet? Magnet holders in airtight and durable steel casing are perfect for use in difficult, demanding climate conditions, including during snow and rain read...

magnetic holders

Magnetic holders can be used to improve production processes, underwater exploration, or searching for space rocks from gold see more...

Shipping is shipped on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 850x180x70 [4x M8] - magnetic beam

magnetic beam

Catalog no 090224

GTIN: 5906301812593

5

length [±0,1 mm]

850 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

70 mm

Weight

54590 g

7 729.93 with VAT / pcs + price for transport

6 284.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
6 284.50 ZŁ
7 729.93 ZŁ
price from 1 pcs
6 095.97 ZŁ
7 498.04 ZŁ
price from 2 pcs
5 907.43 ZŁ
7 266.14 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

BM 850x180x70 [4x M8] - magnetic beam

Specification/characteristics BM 850x180x70 [4x M8] - magnetic beam
properties
values
Cat. no.
090224
GTIN
5906301812593
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
850 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
70 mm [±0,1 mm]
Weight
54590 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

A magnetic beam is a device mounted above conveyor belts, which use neodymium magnets to capture unwanted iron elements. Any metal parts are attracted to the underside of the beam. The use of such beams is particularly common in the food industry, plastic processing and other industrial sectors.
The selection of the magnetic beam depends on the width of the conveyor and the cross-section of the beam. The larger the cross-section of the beam, the greater the magnetic field range. For example, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, while for a layer of material over 8 cm, a larger beam is required. Custom-sized beams are available upon request.
The basis of the magnetic beam’s operation are strong neodymium magnets, which create a field capable of attracting iron contaminants. Metal objects are lifted and attach to the underside of the beam. The beam can be mounted above the conveyor or set at an angle as a chute separator. The stainless steel housing protects the magnets, the device is durable and reliable in harsh industrial conditions.
Magnetic beams effectively capture iron elements, such as balls with a diameter of 5-10 mm, bolts and nuts, metal items, such as nails or keys. The range of the beam's action depends on its magnetic parameters and cross-section. These devices are indispensable in many industrial sectors where removing iron contaminants is critical.
Their application allows for the effective removal of iron contaminants from transported materials, especially in industrial sectors requiring precise contaminant separation. Equipped with neodymium magnets, these beams guarantee effectiveness in challenging industrial conditions. Moreover, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • Their power is maintained, and after around 10 years, it drops only by ~1% (theoretically),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • Because of the lustrous layer of nickel, the component looks high-end,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • The ability for precise shaping as well as adaptation to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
  • Significant impact in cutting-edge sectors – they serve a purpose in data storage devices, electric drives, diagnostic apparatus and high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them useful in miniature devices

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also increases its overall strength,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a humid environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of polymer,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing complex structures directly in the magnet,
  • Possible threat from tiny pieces may arise, in case of ingestion, which is important in the family environments. Additionally, small elements from these devices might hinder health screening after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Exercise Caution with Neodymium Magnets

Neodymium magnets are extremely fragile, leading to their cracking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets jump and also touch each other mutually within a distance of several to almost 10 cm from each other.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

  Neodymium magnets should not be around children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Warning!

In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98