MP 15x7/3.5x3 / N38 - ring magnet
ring magnet
Catalog no 030182
GTIN/EAN: 5906301811992
Diameter
15 mm [±0,1 mm]
internal diameter Ø
7/3.5 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
3.76 g
Magnetization Direction
↑ axial
Load capacity
2.71 kg / 26.61 N
Magnetic Induction
230.16 mT / 2302 Gs
Coating
[NiCuNi] Nickel
1.747 ZŁ with VAT / pcs + price for transport
1.420 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 22 499 98 98
otherwise get in touch using
request form
through our site.
Force along with appearance of a magnet can be checked on our
modular calculator.
Order by 14:00 and we’ll ship today!
Technical specification - MP 15x7/3.5x3 / N38 - ring magnet
Specification / characteristics - MP 15x7/3.5x3 / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030182 |
| GTIN/EAN | 5906301811992 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 15 mm [±0,1 mm] |
| internal diameter Ø | 7/3.5 mm [±0,1 mm] |
| Height | 3 mm [±0,1 mm] |
| Weight | 3.76 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 2.71 kg / 26.61 N |
| Magnetic Induction ~ ? | 230.16 mT / 2302 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the product - technical parameters
The following information represent the outcome of a engineering simulation. Values were calculated on algorithms for the material Nd2Fe14B. Actual parameters might slightly differ from theoretical values. Please consider these data as a supplementary guide for designers.
Table 1: Static pull force (force vs distance) - characteristics
MP 15x7/3.5x3 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
1995 Gs
199.5 mT
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
strong |
| 1 mm |
1833 Gs
183.3 mT
|
2.29 kg / 5.05 lbs
2289.1 g / 22.5 N
|
strong |
| 2 mm |
1618 Gs
161.8 mT
|
1.78 kg / 3.93 lbs
1784.1 g / 17.5 N
|
low risk |
| 3 mm |
1385 Gs
138.5 mT
|
1.31 kg / 2.88 lbs
1307.5 g / 12.8 N
|
low risk |
| 5 mm |
959 Gs
95.9 mT
|
0.63 kg / 1.38 lbs
627.1 g / 6.2 N
|
low risk |
| 10 mm |
362 Gs
36.2 mT
|
0.09 kg / 0.20 lbs
89.3 g / 0.9 N
|
low risk |
| 15 mm |
156 Gs
15.6 mT
|
0.02 kg / 0.04 lbs
16.5 g / 0.2 N
|
low risk |
| 20 mm |
78 Gs
7.8 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
low risk |
| 30 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
low risk |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
Table 2: Slippage load (vertical surface)
MP 15x7/3.5x3 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.54 kg / 1.19 lbs
542.0 g / 5.3 N
|
| 1 mm | Stal (~0.2) |
0.46 kg / 1.01 lbs
458.0 g / 4.5 N
|
| 2 mm | Stal (~0.2) |
0.36 kg / 0.78 lbs
356.0 g / 3.5 N
|
| 3 mm | Stal (~0.2) |
0.26 kg / 0.58 lbs
262.0 g / 2.6 N
|
| 5 mm | Stal (~0.2) |
0.13 kg / 0.28 lbs
126.0 g / 1.2 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MP 15x7/3.5x3 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.81 kg / 1.79 lbs
813.0 g / 8.0 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.54 kg / 1.19 lbs
542.0 g / 5.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.27 kg / 0.60 lbs
271.0 g / 2.7 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.36 kg / 2.99 lbs
1355.0 g / 13.3 N
|
Table 4: Steel thickness (substrate influence) - sheet metal selection
MP 15x7/3.5x3 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.27 kg / 0.60 lbs
271.0 g / 2.7 N
|
| 1 mm |
|
0.68 kg / 1.49 lbs
677.5 g / 6.6 N
|
| 2 mm |
|
1.36 kg / 2.99 lbs
1355.0 g / 13.3 N
|
| 3 mm |
|
2.03 kg / 4.48 lbs
2032.5 g / 19.9 N
|
| 5 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
| 10 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
| 11 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
| 12 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
Table 5: Working in heat (stability) - resistance threshold
MP 15x7/3.5x3 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
OK |
| 40 °C | -2.2% |
2.65 kg / 5.84 lbs
2650.4 g / 26.0 N
|
OK |
| 60 °C | -4.4% |
2.59 kg / 5.71 lbs
2590.8 g / 25.4 N
|
|
| 80 °C | -6.6% |
2.53 kg / 5.58 lbs
2531.1 g / 24.8 N
|
|
| 100 °C | -28.8% |
1.93 kg / 4.25 lbs
1929.5 g / 18.9 N
|
Table 6: Magnet-Magnet interaction (repulsion) - forces in the system
MP 15x7/3.5x3 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.48 kg / 7.68 lbs
3 483 Gs
|
0.52 kg / 1.15 lbs
523 g / 5.1 N
|
N/A |
| 1 mm |
3.24 kg / 7.14 lbs
3 846 Gs
|
0.49 kg / 1.07 lbs
486 g / 4.8 N
|
2.91 kg / 6.43 lbs
~0 Gs
|
| 2 mm |
2.94 kg / 6.49 lbs
3 666 Gs
|
0.44 kg / 0.97 lbs
441 g / 4.3 N
|
2.65 kg / 5.84 lbs
~0 Gs
|
| 3 mm |
2.62 kg / 5.78 lbs
3 460 Gs
|
0.39 kg / 0.87 lbs
393 g / 3.9 N
|
2.36 kg / 5.20 lbs
~0 Gs
|
| 5 mm |
1.98 kg / 4.36 lbs
3 004 Gs
|
0.30 kg / 0.65 lbs
296 g / 2.9 N
|
1.78 kg / 3.92 lbs
~0 Gs
|
| 10 mm |
0.81 kg / 1.78 lbs
1 919 Gs
|
0.12 kg / 0.27 lbs
121 g / 1.2 N
|
0.73 kg / 1.60 lbs
~0 Gs
|
| 20 mm |
0.11 kg / 0.25 lbs
724 Gs
|
0.02 kg / 0.04 lbs
17 g / 0.2 N
|
0.10 kg / 0.23 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
88 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (electronics) - warnings
MP 15x7/3.5x3 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 3.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 3.0 cm |
| Remote | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (cracking risk) - collision effects
MP 15x7/3.5x3 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
27.63 km/h
(7.67 m/s)
|
0.11 J | |
| 30 mm |
46.90 km/h
(13.03 m/s)
|
0.32 J | |
| 50 mm |
60.54 km/h
(16.82 m/s)
|
0.53 J | |
| 100 mm |
85.62 km/h
(23.78 m/s)
|
1.06 J |
Table 9: Corrosion resistance
MP 15x7/3.5x3 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MP 15x7/3.5x3 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 3 461 Mx | 34.6 µWb |
| Pc Coefficient | 0.26 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MP 15x7/3.5x3 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 2.71 kg | Standard |
| Water (riverbed) |
3.10 kg
(+0.39 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Caution: On a vertical surface, the magnet retains only ~20% of its nominal pull.
2. Efficiency vs thickness
*Thin steel (e.g. 0.5mm PC case) drastically weakens the holding force.
3. Thermal stability
*For N38 grade, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.26
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See more offers
Pros and cons of Nd2Fe14B magnets.
Benefits
- They virtually do not lose strength, because even after ten years the decline in efficiency is only ~1% (in laboratory conditions),
- They feature excellent resistance to magnetism drop due to external fields,
- Thanks to the shimmering finish, the layer of Ni-Cu-Ni, gold, or silver-plated gives an visually attractive appearance,
- Magnetic induction on the working part of the magnet remains extremely intense,
- Thanks to resistance to high temperature, they are able to function (depending on the shape) even at temperatures up to 230°C and higher...
- Possibility of precise modeling as well as optimizing to defined conditions,
- Huge importance in electronics industry – they serve a role in hard drives, electric motors, advanced medical instruments, as well as other advanced devices.
- Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications
Disadvantages
- Susceptibility to cracking is one of their disadvantages. Upon strong impact they can break. We recommend keeping them in a steel housing, which not only protects them against impacts but also raises their durability
- When exposed to high temperature, neodymium magnets experience a drop in force. Often, when the temperature exceeds 80°C, their power decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- Magnets exposed to a humid environment can corrode. Therefore while using outdoors, we advise using waterproof magnets made of rubber, plastic or other material protecting against moisture
- Limited ability of making nuts in the magnet and complex shapes - recommended is a housing - magnet mounting.
- Potential hazard resulting from small fragments of magnets pose a threat, when accidentally swallowed, which becomes key in the aspect of protecting the youngest. Additionally, tiny parts of these devices can be problematic in diagnostics medical in case of swallowing.
- Due to complex production process, their price is higher than average,
Pull force analysis
Detachment force of the magnet in optimal conditions – what affects it?
- with the use of a yoke made of low-carbon steel, guaranteeing maximum field concentration
- possessing a massiveness of minimum 10 mm to avoid saturation
- with a surface cleaned and smooth
- under conditions of gap-free contact (surface-to-surface)
- under axial force direction (90-degree angle)
- at standard ambient temperature
Impact of factors on magnetic holding capacity in practice
- Distance (between the magnet and the plate), as even a tiny clearance (e.g. 0.5 mm) can cause a decrease in lifting capacity by up to 50% (this also applies to varnish, corrosion or debris).
- Angle of force application – highest force is available only during pulling at a 90° angle. The resistance to sliding of the magnet along the surface is standardly several times smaller (approx. 1/5 of the lifting capacity).
- Metal thickness – thin material does not allow full use of the magnet. Magnetic flux passes through the material instead of converting into lifting capacity.
- Steel type – mild steel gives the best results. Higher carbon content lower magnetic properties and holding force.
- Surface quality – the more even the plate, the larger the contact zone and stronger the hold. Roughness creates an air distance.
- Temperature – temperature increase causes a temporary drop of induction. It is worth remembering the thermal limit for a given model.
Lifting capacity testing was performed on a smooth plate of optimal thickness, under a perpendicular pulling force, however under parallel forces the load capacity is reduced by as much as 75%. Additionally, even a slight gap between the magnet and the plate lowers the lifting capacity.
H&S for magnets
Fragile material
Despite metallic appearance, the material is brittle and cannot withstand shocks. Do not hit, as the magnet may crumble into hazardous fragments.
Permanent damage
Avoid heat. NdFeB magnets are sensitive to heat. If you need resistance above 80°C, look for special high-temperature series (H, SH, UH).
Powerful field
Use magnets consciously. Their immense force can shock even experienced users. Be vigilant and respect their power.
Life threat
Patients with a heart stimulator should keep an large gap from magnets. The magnetic field can stop the functioning of the implant.
Electronic devices
Very strong magnetic fields can corrupt files on credit cards, HDDs, and storage devices. Stay away of min. 10 cm.
Keep away from electronics
GPS units and mobile phones are extremely susceptible to magnetism. Direct contact with a powerful NdFeB magnet can permanently damage the internal compass in your phone.
Sensitization to coating
Nickel alert: The nickel-copper-nickel coating contains nickel. If redness happens, cease working with magnets and use protective gear.
Machining danger
Fire hazard: Rare earth powder is highly flammable. Do not process magnets in home conditions as this risks ignition.
Bone fractures
Protect your hands. Two powerful magnets will join instantly with a force of massive weight, crushing everything in their path. Be careful!
Product not for children
Always keep magnets out of reach of children. Risk of swallowing is significant, and the effects of magnets connecting inside the body are tragic.
