MPL 5x5x2 / N38 - lamellar magnet
lamellar magnet
Catalog no 020173
GTIN/EAN: 5906301811794
length
5 mm [±0,1 mm]
Width
5 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
0.38 g
Magnetization Direction
↑ axial
Load capacity
0.77 kg / 7.57 N
Magnetic Induction
360.52 mT / 3605 Gs
Coating
[NiCuNi] Nickel
0.308 ZŁ with VAT / pcs + price for transport
0.250 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 22 499 98 98
otherwise let us know using
contact form
the contact form page.
Parameters as well as shape of magnetic components can be estimated using our
magnetic mass calculator.
Orders submitted before 14:00 will be dispatched today!
Physical properties - MPL 5x5x2 / N38 - lamellar magnet
Specification / characteristics - MPL 5x5x2 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020173 |
| GTIN/EAN | 5906301811794 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 5 mm [±0,1 mm] |
| Width | 5 mm [±0,1 mm] |
| Height | 2 mm [±0,1 mm] |
| Weight | 0.38 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.77 kg / 7.57 N |
| Magnetic Induction ~ ? | 360.52 mT / 3605 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the product - data
The following information are the outcome of a engineering analysis. Values were calculated on algorithms for the material Nd2Fe14B. Actual conditions might slightly differ. Treat these calculations as a supplementary guide when designing systems.
Table 1: Static force (pull vs distance) - power drop
MPL 5x5x2 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3601 Gs
360.1 mT
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
low risk |
| 1 mm |
2436 Gs
243.6 mT
|
0.35 kg / 0.78 lbs
352.2 g / 3.5 N
|
low risk |
| 2 mm |
1464 Gs
146.4 mT
|
0.13 kg / 0.28 lbs
127.3 g / 1.2 N
|
low risk |
| 3 mm |
872 Gs
87.2 mT
|
0.05 kg / 0.10 lbs
45.1 g / 0.4 N
|
low risk |
| 5 mm |
347 Gs
34.7 mT
|
0.01 kg / 0.02 lbs
7.2 g / 0.1 N
|
low risk |
| 10 mm |
68 Gs
6.8 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
low risk |
| 15 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 20 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 30 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
Table 2: Slippage capacity (vertical surface)
MPL 5x5x2 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 0.34 lbs
154.0 g / 1.5 N
|
| 1 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 2 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MPL 5x5x2 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.23 kg / 0.51 lbs
231.0 g / 2.3 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 0.34 lbs
154.0 g / 1.5 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 0.17 lbs
77.0 g / 0.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.39 kg / 0.85 lbs
385.0 g / 3.8 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MPL 5x5x2 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 0.17 lbs
77.0 g / 0.8 N
|
| 1 mm |
|
0.19 kg / 0.42 lbs
192.5 g / 1.9 N
|
| 2 mm |
|
0.39 kg / 0.85 lbs
385.0 g / 3.8 N
|
| 3 mm |
|
0.58 kg / 1.27 lbs
577.5 g / 5.7 N
|
| 5 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 10 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 11 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 12 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
Table 5: Thermal stability (material behavior) - resistance threshold
MPL 5x5x2 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
OK |
| 40 °C | -2.2% |
0.75 kg / 1.66 lbs
753.1 g / 7.4 N
|
OK |
| 60 °C | -4.4% |
0.74 kg / 1.62 lbs
736.1 g / 7.2 N
|
|
| 80 °C | -6.6% |
0.72 kg / 1.59 lbs
719.2 g / 7.1 N
|
|
| 100 °C | -28.8% |
0.55 kg / 1.21 lbs
548.2 g / 5.4 N
|
Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MPL 5x5x2 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.00 kg / 4.41 lbs
5 058 Gs
|
0.30 kg / 0.66 lbs
300 g / 2.9 N
|
N/A |
| 1 mm |
1.42 kg / 3.13 lbs
6 070 Gs
|
0.21 kg / 0.47 lbs
213 g / 2.1 N
|
1.28 kg / 2.82 lbs
~0 Gs
|
| 2 mm |
0.91 kg / 2.02 lbs
4 871 Gs
|
0.14 kg / 0.30 lbs
137 g / 1.3 N
|
0.82 kg / 1.81 lbs
~0 Gs
|
| 3 mm |
0.56 kg / 1.23 lbs
3 801 Gs
|
0.08 kg / 0.18 lbs
83 g / 0.8 N
|
0.50 kg / 1.10 lbs
~0 Gs
|
| 5 mm |
0.20 kg / 0.43 lbs
2 254 Gs
|
0.03 kg / 0.06 lbs
29 g / 0.3 N
|
0.18 kg / 0.39 lbs
~0 Gs
|
| 10 mm |
0.02 kg / 0.04 lbs
695 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
136 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (electronics) - warnings
MPL 5x5x2 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 2.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.5 cm |
| Car key | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (cracking risk) - warning
MPL 5x5x2 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
45.41 km/h
(12.61 m/s)
|
0.03 J | |
| 30 mm |
78.63 km/h
(21.84 m/s)
|
0.09 J | |
| 50 mm |
101.51 km/h
(28.20 m/s)
|
0.15 J | |
| 100 mm |
143.56 km/h
(39.88 m/s)
|
0.30 J |
Table 9: Anti-corrosion coating durability
MPL 5x5x2 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MPL 5x5x2 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 940 Mx | 9.4 µWb |
| Pc Coefficient | 0.46 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MPL 5x5x2 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.77 kg | Standard |
| Water (riverbed) |
0.88 kg
(+0.11 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Note: On a vertical wall, the magnet holds just ~20% of its max power.
2. Efficiency vs thickness
*Thin steel (e.g. computer case) significantly weakens the holding force.
3. Thermal stability
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.46
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other deals
Strengths as well as weaknesses of rare earth magnets.
Advantages
- Their magnetic field remains stable, and after around 10 years it decreases only by ~1% (theoretically),
- Magnets perfectly protect themselves against demagnetization caused by ambient magnetic noise,
- The use of an metallic coating of noble metals (nickel, gold, silver) causes the element to look better,
- Magnetic induction on the top side of the magnet remains maximum,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and are able to act (depending on the form) even at a temperature of 230°C or more...
- Possibility of detailed shaping and modifying to specific applications,
- Wide application in high-tech industry – they are used in hard drives, motor assemblies, diagnostic systems, as well as technologically advanced constructions.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in tiny dimensions, which makes them useful in small systems
Limitations
- To avoid cracks under impact, we recommend using special steel holders. Such a solution protects the magnet and simultaneously improves its durability.
- Neodymium magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of strength (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- When exposed to humidity, magnets start to rust. To use them in conditions outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which prevent oxidation as well as corrosion.
- We suggest a housing - magnetic mechanism, due to difficulties in producing threads inside the magnet and complex forms.
- Potential hazard related to microscopic parts of magnets pose a threat, when accidentally swallowed, which gains importance in the context of child safety. Additionally, tiny parts of these devices can be problematic in diagnostics medical when they are in the body.
- With budget limitations the cost of neodymium magnets can be a barrier,
Lifting parameters
Best holding force of the magnet in ideal parameters – what it depends on?
- with the application of a yoke made of low-carbon steel, ensuring full magnetic saturation
- whose thickness equals approx. 10 mm
- characterized by lack of roughness
- with total lack of distance (without impurities)
- under perpendicular force direction (90-degree angle)
- at temperature approx. 20 degrees Celsius
Impact of factors on magnetic holding capacity in practice
- Clearance – the presence of foreign body (paint, dirt, air) interrupts the magnetic circuit, which lowers capacity steeply (even by 50% at 0.5 mm).
- Angle of force application – highest force is obtained only during perpendicular pulling. The resistance to sliding of the magnet along the plate is usually many times lower (approx. 1/5 of the lifting capacity).
- Base massiveness – too thin steel causes magnetic saturation, causing part of the power to be lost to the other side.
- Material type – ideal substrate is high-permeability steel. Stainless steels may generate lower lifting capacity.
- Smoothness – full contact is obtained only on smooth steel. Any scratches and bumps create air cushions, weakening the magnet.
- Heat – neodymium magnets have a sensitivity to temperature. When it is hot they are weaker, and in frost they can be stronger (up to a certain limit).
Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the load capacity is reduced by as much as fivefold. In addition, even a small distance between the magnet and the plate reduces the load capacity.
Safety rules for work with NdFeB magnets
Nickel allergy
Some people experience a sensitization to nickel, which is the typical protective layer for NdFeB magnets. Frequent touching can result in a rash. It is best to use safety gloves.
Do not drill into magnets
Fire hazard: Rare earth powder is explosive. Do not process magnets in home conditions as this risks ignition.
Hand protection
Watch your fingers. Two large magnets will snap together instantly with a force of several hundred kilograms, crushing everything in their path. Exercise extreme caution!
Pacemakers
Health Alert: Strong magnets can deactivate pacemakers and defibrillators. Stay away if you have medical devices.
Impact on smartphones
A strong magnetic field disrupts the operation of magnetometers in smartphones and GPS navigation. Do not bring magnets near a device to prevent breaking the sensors.
Demagnetization risk
Control the heat. Heating the magnet above 80 degrees Celsius will destroy its properties and strength.
Handling guide
Handle magnets with awareness. Their immense force can surprise even professionals. Be vigilant and do not underestimate their force.
Threat to electronics
Do not bring magnets near a wallet, laptop, or TV. The magnetic field can irreversibly ruin these devices and erase data from cards.
Danger to the youngest
Absolutely store magnets away from children. Risk of swallowing is high, and the consequences of magnets connecting inside the body are tragic.
Protective goggles
Despite the nickel coating, the material is delicate and cannot withstand shocks. Do not hit, as the magnet may shatter into sharp, dangerous pieces.
