tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our offer. Practically all "neodymium magnets" on our website are in stock for immediate delivery (see the list). Check out the magnet price list for more details see the magnet price list

Magnet for searching F400 GOLD

Where to purchase strong neodymium magnet? Magnet holders in airtight, solid steel casing are excellent for use in variable and difficult weather, including during snow and rain more information...

magnetic holders

Magnetic holders can be used to improve manufacturing, underwater discoveries, or finding space rocks from gold check...

Order is always shipped on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 5x5x2 / N38 - lamellar magnet

lamellar magnet

Catalog no 020173

GTIN: 5906301811794

5

length [±0,1 mm]

5 mm

Width [±0,1 mm]

5 mm

Height [±0,1 mm]

2 mm

Weight

0.38 g

Magnetization Direction

↑ axial

Load capacity

0.79 kg / 7.75 N

Magnetic Induction

360.52 mT

Coating

[NiCuNi] nickel

0.308 with VAT / pcs + price for transport

0.250 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.250 ZŁ
0.308 ZŁ
price from 2400 pcs
0.235 ZŁ
0.289 ZŁ
price from 10000 pcs
0.220 ZŁ
0.271 ZŁ

Looking for a better price?

Contact us by phone +48 888 99 98 98 if you prefer let us know through inquiry form through our site.
Strength along with shape of magnets can be tested using our magnetic calculator.

Same-day processing for orders placed before 14:00.

MPL 5x5x2 / N38 - lamellar magnet

Specification/characteristics MPL 5x5x2 / N38 - lamellar magnet
properties
values
Cat. no.
020173
GTIN
5906301811794
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
5 mm [±0,1 mm]
Width
5 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
0.38 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.79 kg / 7.75 N
Magnetic Induction ~ ?
360.52 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets i.e. MPL 5x5x2 / N38 are magnets made from neodymium in a flat form. They are appreciated for their very strong magnetic properties, which are much stronger than standard ferrite magnets.
Due to their strength, flat magnets are commonly applied in structures that require very strong attraction.
Most common temperature resistance of these magnets is 80°C, but with larger dimensions, this value rises.
Additionally, flat magnets usually have different coatings applied to their surfaces, such as nickel, gold, or chrome, to improve their durability.
The magnet named MPL 5x5x2 / N38 i.e. a lifting capacity of 0.79 kg weighing a mere 0.38 grams, making it the excellent choice for projects needing a flat magnet.
Neodymium flat magnets present a range of advantages versus other magnet shapes, which make them being the best choice for many applications:
Contact surface: Thanks to their flat shape, flat magnets guarantee a larger contact surface with adjacent parts, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: They are often utilized in many devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is crucial for their operation.
Mounting: Their flat shape makes mounting, especially when there's a need to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets allows designers a lot of flexibility in placing them in devices, which can be more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet can provide better stability, reducing the risk of shifting or rotating. It’s important to keep in mind that the optimal shape of the magnet is dependent on the specific application and requirements. In some cases, other shapes, such as cylindrical or spherical, are more appropriate.
Magnets attract ferromagnetic materials, such as iron, nickel, cobalt and alloys of metals with magnetic properties. Additionally, magnets may lesser affect some other metals, such as steel. Magnets are used in many fields.
Magnets work thanks to the properties of their magnetic field, which is generated by the movement of electric charges within their material. Magnetic fields of these objects creates attractive interactions, which affect objects made of nickel or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Poles of the same kind, e.g. two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are commonly used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them indispensable for applications requiring strong magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the materials used.
Magnets do not attract plastics, glass, wooden materials and precious stones. Moreover, magnets do not affect most metals, such as copper, aluminum materials, gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless they are subjected to an extremely strong magnetic field.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards and even medical equipment, like pacemakers. Therefore, it is important to exercise caution when using magnets.
A neodymium magnet of class N50 and N52 is a powerful and highly strong metal object with the shape of a plate, that provides high force and universal application. Attractive price, fast shipping, durability and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous strength, neodymium magnets offer the following advantages:

  • They have constant strength, and over more than 10 years their attraction force decreases symbolically – ~1% (in testing),
  • They protect against demagnetization induced by surrounding electromagnetic environments effectively,
  • The use of a polished gold surface provides a eye-catching finish,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for custom shaping or customization to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
  • Key role in new technology industries – they serve a purpose in HDDs, rotating machines, clinical machines or even high-tech tools,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to shocks, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and enhances its overall durability,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to moisture can degrade. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is not feasible,
  • Safety concern from tiny pieces may arise, when consumed by mistake, which is significant in the protection of children. Additionally, tiny components from these assemblies might disrupt scanning when ingested,
  • In cases of mass production, neodymium magnet cost may be a barrier,

Maximum lifting force for a neodymium magnet – what contributes to it?

The given pulling force of the magnet represents the maximum force, determined in ideal conditions, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a polished side
  • with zero air gap
  • with vertical force applied
  • under standard ambient temperature

Lifting capacity in real conditions – factors

Practical lifting force is dependent on elements, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured with the use of a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, whereas under shearing force the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet and the plate decreases the lifting capacity.

Handle with Care: Neodymium Magnets

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If the joining of neodymium magnets is not controlled, then they may crumble and also crack. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 Keep neodymium magnets away from children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Never bring neodymium magnets close to a phone and GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets are extremely fragile, leading to breaking.

Neodymium magnets are delicate as well as will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Warning!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98