HH 16x5.3 [M3] / N38 - through hole magnetic holder
through hole magnetic holder
Catalog no 370480
GTIN: 5906301814900
Diameter Ø [±0,1 mm]
16 mm
Height [±0,1 mm]
5.3 mm
Weight
6.4 g
Magnetization Direction
↑ axial
Load capacity
4 kg / 39.23 N
Coating
[NiCuNi] nickel
3.32 ZŁ with VAT / pcs + price for transport
2.70 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Give us a call
+48 888 99 98 98
if you prefer contact us by means of
inquiry form
the contact section.
Strength and structure of magnets can be verified on our
force calculator.
Same-day shipping for orders placed before 14:00.
HH 16x5.3 [M3] / N38 - through hole magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous field intensity, neodymium magnets offer the following advantages:
- They do not lose their power approximately 10 years – the loss of power is only ~1% (according to tests),
- They are highly resistant to demagnetization caused by external magnetic sources,
- In other words, due to the shiny nickel coating, the magnet obtains an professional appearance,
- Magnetic induction on the surface of these magnets is impressively powerful,
- Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which broadens their application range,
- Wide application in new technology industries – they are used in HDDs, electric drives, healthcare devices and high-tech tools,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to physical collisions, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall resistance,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing holes directly in the magnet,
- Possible threat due to small fragments may arise, in case of ingestion, which is notable in the context of child safety. Moreover, minuscule fragments from these devices can interfere with diagnostics when ingested,
- Due to the price of neodymium, their cost is relatively high,
Best holding force of the magnet in ideal parameters – what contributes to it?
The given lifting capacity of the magnet means the maximum lifting force, determined in the best circumstances, specifically:
- with mild steel, used as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a refined outer layer
- with no separation
- with vertical force applied
- at room temperature
What influences lifting capacity in practice
The lifting capacity of a magnet depends on in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, however under parallel forces the load capacity is reduced by as much as 75%. In addition, even a small distance {between} the magnet’s surface and the plate decreases the lifting capacity.
Handle with Care: Neodymium Magnets
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Never bring neodymium magnets close to a phone and GPS.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a major injury may occur. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a significant pressure or a fracture.
Neodymium magnetic are especially fragile, resulting in shattering.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Keep neodymium magnets far from children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Be careful!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.
