HH 16x5.3 [M3] / N38 - through hole magnetic holder
through hole magnetic holder
Catalog no 370480
GTIN: 5906301814900
Diameter Ø [±0,1 mm]
16 mm
Height [±0,1 mm]
5.3 mm
Weight
6.4 g
Magnetization Direction
↑ axial
Load capacity
4 kg / 39.23 N
Coating
[NiCuNi] nickel
3.32 ZŁ with VAT / pcs + price for transport
2.70 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Give us a call
+48 888 99 98 98
alternatively get in touch through
inquiry form
through our site.
Weight as well as shape of magnets can be reviewed on our
magnetic calculator.
Order by 14:00 and we’ll ship today!
HH 16x5.3 [M3] / N38 - through hole magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their strong power, neodymium magnets have these key benefits:
- They retain their magnetic properties for nearly 10 years – the drop is just ~1% (based on simulations),
- Their ability to resist magnetic interference from external fields is among the best,
- The use of a mirror-like silver surface provides a smooth finish,
- Magnetic induction on the surface of these magnets is very strong,
- Thanks to their high temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- With the option for customized forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
- Important function in advanced technical fields – they find application in data storage devices, electric drives, clinical machines as well as technologically developed systems,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They may fracture when subjected to a sudden impact. If the magnets are exposed to shocks, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time reinforces its overall strength,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of synthetic coating for outdoor use,
- Limited ability to create precision features in the magnet – the use of a external casing is recommended,
- Safety concern related to magnet particles may arise, especially if swallowed, which is significant in the protection of children. It should also be noted that miniature parts from these products have the potential to hinder health screening if inside the body,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Maximum holding power of the magnet – what it depends on?
The given holding capacity of the magnet means the highest holding force, calculated in the best circumstances, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- in a perpendicular direction of force
- in normal thermal conditions
Determinants of practical lifting force of a magnet
The lifting capacity of a magnet depends on in practice the following factors, from primary to secondary:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of optimal thickness, under perpendicular forces, however under shearing force the lifting capacity is smaller. In addition, even a slight gap {between} the magnet and the plate reduces the load capacity.
Handle Neodymium Magnets Carefully
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can demagnetize at high temperatures.
In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.
People with pacemakers are advised to avoid neodymium magnets.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets are the most powerful magnets ever invented. Their power can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
If you have a finger between or on the path of attracting magnets, there may be a severe cut or a fracture.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnetic are extremely fragile, leading to their cracking.
Neodymium magnetic are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Do not give neodymium magnets to youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Be careful!
To show why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.
