e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our store's offer. All magnesy on our website are in stock for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to buy strong neodymium magnet? Magnetic holders in airtight and durable steel enclosure are ideally suited for use in variable and difficult weather conditions, including during rain and snow more information...

magnets with holders

Holders with magnets can be applied to facilitate production, exploring underwater areas, or locating space rocks made of ore more...

Order is always shipped on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

HH 16x5.3 [M3] / N38 - through hole magnetic holder

through hole magnetic holder

Catalog no 370480

GTIN: 5906301814900

5

Diameter Ø [±0,1 mm]

16 mm

Height [±0,1 mm]

5.3 mm

Weight

6.4 g

Magnetization Direction

↑ axial

Load capacity

4 kg / 39.23 N

Coating

[NiCuNi] nickel

3.32 with VAT / pcs + price for transport

2.70 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2.70 ZŁ
3.32 ZŁ
price from 223 pcs
2.54 ZŁ
3.12 ZŁ
price from 556 pcs
2.38 ZŁ
2.92 ZŁ

Looking for a better price?

Pick up the phone and ask +48 22 499 98 98 alternatively get in touch through request form the contact section.
Strength along with form of a neodymium magnet can be verified on our force calculator.

Same-day processing for orders placed before 14:00.

HH 16x5.3 [M3] / N38 - through hole magnetic holder

Specification/characteristics HH 16x5.3 [M3] / N38 - through hole magnetic holder
properties
values
Cat. no.
370480
GTIN
5906301814900
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
16 mm [±0,1 mm]
Height
5.3 mm [±0,1 mm]
Weight
6.4 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
4 kg / 39.23 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They retain their magnetic properties for around ten years – the drop is just ~1% (in theory),
  • They show exceptional resistance to demagnetization from external field exposure,
  • In other words, due to the shiny silver coating, the magnet obtains an aesthetic appearance,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which broadens their functional possibilities,
  • Key role in advanced technical fields – they are used in HDDs, electromechanical systems, healthcare devices along with high-tech tools,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and increases its overall durability,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to wet conditions can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of non-metallic composites,
  • Limited ability to create complex details in the magnet – the use of a housing is recommended,
  • Possible threat related to magnet particles may arise, when consumed by mistake, which is important in the context of child safety. Furthermore, small elements from these magnets have the potential to disrupt scanning once in the system,
  • Due to the price of neodymium, their cost is considerably higher,

Caution with Neodymium Magnets

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Magnets made of neodymium are known for being fragile, which can cause them to crumble.

Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

In the case of holding a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Warning!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98