HH 16x5.3 [M3] / N38 - through hole magnetic holder
through hole magnetic holder
Catalog no 370480
GTIN: 5906301814900
Diameter Ø [±0,1 mm]
16 mm
Height [±0,1 mm]
5.3 mm
Weight
6.4 g
Magnetization Direction
↑ axial
Load capacity
4 kg / 39.23 N
Coating
[NiCuNi] nickel
3.32 ZŁ with VAT / pcs + price for transport
2.70 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Give us a call
+48 22 499 98 98
alternatively drop us a message via
request form
our website.
Weight and form of a neodymium magnet can be checked on our
online calculation tool.
Order by 14:00 and we’ll ship today!
HH 16x5.3 [M3] / N38 - through hole magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They do not lose their strength nearly ten years – the reduction of power is only ~1% (according to tests),
- They show superior resistance to demagnetization from external field exposure,
- Because of the brilliant layer of silver, the component looks high-end,
- They possess significant magnetic force measurable at the magnet’s surface,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which increases their application range,
- Key role in cutting-edge sectors – they serve a purpose in computer drives, electric motors, clinical machines and high-tech tools,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to external force, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall strength,
- They lose strength at high temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, we recommend waterproof types made of rubber,
- Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
- Potential hazard related to magnet particles may arise, when consumed by mistake, which is crucial in the protection of children. Moreover, minuscule fragments from these magnets have the potential to hinder health screening after being swallowed,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications
Maximum magnetic pulling force – what contributes to it?
The given pulling force of the magnet means the maximum force, measured in a perfect environment, that is:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a refined outer layer
- with zero air gap
- with vertical force applied
- at room temperature
Key elements affecting lifting force
In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, however under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the holding force.
Safety Precautions
Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Neodymium magnets are delicate and can easily break and get damaged.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Do not give neodymium magnets to children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets may crack or alternatively crumble with careless connecting to each other. You can't approach them to each other. At a distance less than 10 cm you should have them very strongly.
Safety rules!
In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.
