tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. Practically all "neodymium magnets" on our website are in stock for immediate delivery (check the list). Check out the magnet pricing for more details check the magnet price list

Magnets for treasure hunters F200 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in airtight, solid steel casing are ideally suited for use in variable and difficult weather conditions, including in the rain and snow see more...

magnetic holders

Magnetic holders can be applied to enhance manufacturing, exploring underwater areas, or locating space rocks made of ore check...

We promise to ship your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

HH 16x5.3 [M3] / N38 - through hole magnetic holder

through hole magnetic holder

Catalog no 370480

GTIN: 5906301814900

5

Diameter Ø [±0,1 mm]

16 mm

Height [±0,1 mm]

5.3 mm

Weight

6.4 g

Magnetization Direction

↑ axial

Load capacity

4 kg / 39.23 N

Coating

[NiCuNi] nickel

3.32 with VAT / pcs + price for transport

2.70 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2.70 ZŁ
3.32 ZŁ
price from 250 pcs
2.54 ZŁ
3.12 ZŁ
price from 600 pcs
2.38 ZŁ
2.92 ZŁ

Want to negotiate?

Contact us by phone +48 888 99 98 98 if you prefer get in touch by means of request form the contact page.
Force and structure of a neodymium magnet can be analyzed with our online calculation tool.

Order by 14:00 and we’ll ship today!

HH 16x5.3 [M3] / N38 - through hole magnetic holder

Specification/characteristics HH 16x5.3 [M3] / N38 - through hole magnetic holder
properties
values
Cat. no.
370480
GTIN
5906301814900
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
16 mm [±0,1 mm]
Height
5.3 mm [±0,1 mm]
Weight
6.4 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
4 kg / 39.23 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their immense field intensity, neodymium magnets offer the following advantages:

  • They retain their magnetic properties for nearly ten years – the loss is just ~1% (in theory),
  • They show strong resistance to demagnetization from outside magnetic sources,
  • The use of a decorative gold surface provides a smooth finish,
  • They have exceptional magnetic induction on the surface of the magnet,
  • With the right combination of materials, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
  • With the option for customized forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Significant impact in cutting-edge sectors – they find application in computer drives, electric drives, diagnostic apparatus or even other advanced devices,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally strengthens its overall robustness,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a damp environment – during outdoor use, we recommend using waterproof magnets, such as those made of polymer,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is restricted,
  • Safety concern from tiny pieces may arise, in case of ingestion, which is notable in the context of child safety. Additionally, tiny components from these magnets might interfere with diagnostics once in the system,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum holding power of the magnet – what contributes to it?

The given lifting capacity of the magnet represents the maximum lifting force, measured in the best circumstances, namely:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • under perpendicular detachment force
  • at room temperature

Impact of factors on magnetic holding capacity in practice

In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed by applying a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, whereas under attempts to slide the magnet the holding force is lower. In addition, even a small distance {between} the magnet’s surface and the plate decreases the load capacity.

Precautions with Neodymium Magnets

  Magnets are not toys, children should not play with them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to insert fingers between magnets or in their path when they attract. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Magnets made of neodymium are noted for their fragility, which can cause them to shatter.

Magnets made of neodymium are delicate as well as will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Be careful!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98