Neodymiums – complete shape selection

Want to buy really powerful magnets? Our range includes rich assortment of various shapes and sizes. They are ideal for domestic applications, workshop and industrial tasks. Browse assortment with fast shipping.

check magnet catalog

Grips for underwater searches

Start your adventure related to seabed exploration! Our specialized grips (F200, F400) provide safety guarantee and huge lifting capacity. Solid, corrosion-resistant housing and reinforced ropes are reliable in rivers and lakes.

find your water magnet

Magnetic mounting systems

Reliable solutions for fixing without drilling. Threaded grips (M8, M10, M12) guarantee quick improvement of work on warehouses. They are indispensable installing lamps, sensors and banners.

see available threads

📦 Fast shipping: buy by 14:00, we'll ship today!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MW 10x1.5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010003

GTIN/EAN: 5906301810001

5.00

Diameter Ø

10 mm [±0,1 mm]

Height

1.5 mm [±0,1 mm]

Weight

0.88 g

Magnetization Direction

↑ axial

Load capacity

0.82 kg / 8.01 N

Magnetic Induction

178.06 mT / 1781 Gs

Coating

[NiCuNi] Nickel

0.431 with VAT / pcs + price for transport

0.350 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.350 ZŁ
0.431 ZŁ
price from 2600 pcs
0.308 ZŁ
0.379 ZŁ
price from 5200 pcs
0.298 ZŁ
0.366 ZŁ
Want to talk magnets?

Pick up the phone and ask +48 22 499 98 98 otherwise let us know via our online form through our site.
Force and shape of neodymium magnets can be analyzed on our force calculator.

Order by 14:00 and we’ll ship today!

Product card - MW 10x1.5 / N38 - cylindrical magnet

Specification / characteristics - MW 10x1.5 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010003
GTIN/EAN 5906301810001
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 10 mm [±0,1 mm]
Height 1.5 mm [±0,1 mm]
Weight 0.88 g
Magnetization Direction ↑ axial
Load capacity ~ ? 0.82 kg / 8.01 N
Magnetic Induction ~ ? 178.06 mT / 1781 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 10x1.5 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Physical analysis of the assembly - technical parameters

These values constitute the result of a physical simulation. Values were calculated on models for the class Nd2Fe14B. Operational parameters might slightly deviate from the simulation results. Please consider these calculations as a preliminary roadmap during assembly planning.

Table 1: Static pull force (pull vs distance) - characteristics
MW 10x1.5 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 1780 Gs
178.0 mT
0.82 kg / 1.81 lbs
820.0 g / 8.0 N
low risk
1 mm 1557 Gs
155.7 mT
0.63 kg / 1.38 lbs
627.2 g / 6.2 N
low risk
2 mm 1253 Gs
125.3 mT
0.41 kg / 0.90 lbs
406.2 g / 4.0 N
low risk
3 mm 958 Gs
95.8 mT
0.24 kg / 0.52 lbs
237.4 g / 2.3 N
low risk
5 mm 530 Gs
53.0 mT
0.07 kg / 0.16 lbs
72.8 g / 0.7 N
low risk
10 mm 140 Gs
14.0 mT
0.01 kg / 0.01 lbs
5.1 g / 0.1 N
low risk
15 mm 52 Gs
5.2 mT
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
low risk
20 mm 24 Gs
2.4 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
low risk
30 mm 8 Gs
0.8 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
low risk
50 mm 2 Gs
0.2 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
low risk

Table 2: Slippage load (vertical surface)
MW 10x1.5 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.16 kg / 0.36 lbs
164.0 g / 1.6 N
1 mm Stal (~0.2) 0.13 kg / 0.28 lbs
126.0 g / 1.2 N
2 mm Stal (~0.2) 0.08 kg / 0.18 lbs
82.0 g / 0.8 N
3 mm Stal (~0.2) 0.05 kg / 0.11 lbs
48.0 g / 0.5 N
5 mm Stal (~0.2) 0.01 kg / 0.03 lbs
14.0 g / 0.1 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Vertical assembly (sliding) - vertical pull
MW 10x1.5 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.25 kg / 0.54 lbs
246.0 g / 2.4 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.16 kg / 0.36 lbs
164.0 g / 1.6 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.08 kg / 0.18 lbs
82.0 g / 0.8 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.41 kg / 0.90 lbs
410.0 g / 4.0 N

Table 4: Material efficiency (substrate influence) - sheet metal selection
MW 10x1.5 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.08 kg / 0.18 lbs
82.0 g / 0.8 N
1 mm
25%
0.21 kg / 0.45 lbs
205.0 g / 2.0 N
2 mm
50%
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
3 mm
75%
0.62 kg / 1.36 lbs
615.0 g / 6.0 N
5 mm
100%
0.82 kg / 1.81 lbs
820.0 g / 8.0 N
10 mm
100%
0.82 kg / 1.81 lbs
820.0 g / 8.0 N
11 mm
100%
0.82 kg / 1.81 lbs
820.0 g / 8.0 N
12 mm
100%
0.82 kg / 1.81 lbs
820.0 g / 8.0 N

Table 5: Thermal stability (material behavior) - power drop
MW 10x1.5 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 0.82 kg / 1.81 lbs
820.0 g / 8.0 N
OK
40 °C -2.2% 0.80 kg / 1.77 lbs
802.0 g / 7.9 N
OK
60 °C -4.4% 0.78 kg / 1.73 lbs
783.9 g / 7.7 N
80 °C -6.6% 0.77 kg / 1.69 lbs
765.9 g / 7.5 N
100 °C -28.8% 0.58 kg / 1.29 lbs
583.8 g / 5.7 N

Table 6: Two magnets (repulsion) - forces in the system
MW 10x1.5 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Sliding Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 1.53 kg / 3.38 lbs
3 185 Gs
0.23 kg / 0.51 lbs
230 g / 2.3 N
N/A
1 mm 1.38 kg / 3.03 lbs
3 371 Gs
0.21 kg / 0.45 lbs
206 g / 2.0 N
1.24 kg / 2.73 lbs
~0 Gs
2 mm 1.17 kg / 2.59 lbs
3 114 Gs
0.18 kg / 0.39 lbs
176 g / 1.7 N
1.06 kg / 2.33 lbs
~0 Gs
3 mm 0.96 kg / 2.12 lbs
2 817 Gs
0.14 kg / 0.32 lbs
144 g / 1.4 N
0.86 kg / 1.91 lbs
~0 Gs
5 mm 0.59 kg / 1.29 lbs
2 201 Gs
0.09 kg / 0.19 lbs
88 g / 0.9 N
0.53 kg / 1.16 lbs
~0 Gs
10 mm 0.14 kg / 0.30 lbs
1 060 Gs
0.02 kg / 0.05 lbs
20 g / 0.2 N
0.12 kg / 0.27 lbs
~0 Gs
20 mm 0.01 kg / 0.02 lbs
281 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
26 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
15 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
10 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
7 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
5 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
4 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Hazards (implants) - precautionary measures
MW 10x1.5 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 3.5 cm
Hearing aid 10 Gs (1.0 mT) 3.0 cm
Mechanical watch 20 Gs (2.0 mT) 2.5 cm
Phone / Smartphone 40 Gs (4.0 mT) 2.0 cm
Remote 50 Gs (5.0 mT) 2.0 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 0.5 cm

Table 8: Impact energy (kinetic energy) - collision effects
MW 10x1.5 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 30.91 km/h
(8.58 m/s)
0.03 J
30 mm 53.32 km/h
(14.81 m/s)
0.10 J
50 mm 68.84 km/h
(19.12 m/s)
0.16 J
100 mm 97.35 km/h
(27.04 m/s)
0.32 J

Table 9: Anti-corrosion coating durability
MW 10x1.5 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Flux)
MW 10x1.5 / N38

Parameter Value SI Unit / Description
Magnetic Flux 1 717 Mx 17.2 µWb
Pc Coefficient 0.22 Low (Flat)

Table 11: Hydrostatics and buoyancy
MW 10x1.5 / N38

Environment Effective steel pull Effect
Air (land) 0.82 kg Standard
Water (riverbed) 0.94 kg
(+0.12 kg buoyancy gain)
+14.5%
Warning: Standard nickel requires drying after every contact with moisture; lack of maintenance will lead to rust spots.
1. Shear force

*Warning: On a vertical wall, the magnet holds just a fraction of its nominal pull.

2. Steel thickness impact

*Thin metal sheet (e.g. computer case) significantly reduces the holding force.

3. Power loss vs temp

*For standard magnets, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.22

The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Engineering data and GPSR
Chemical composition
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010003-2026
Magnet Unit Converter
Force (pull)

Magnetic Induction

View more products

The presented product is an incredibly powerful cylindrical magnet, produced from durable NdFeB material, which, with dimensions of Ø10x1.5 mm, guarantees maximum efficiency. This specific item features high dimensional repeatability and industrial build quality, making it an ideal solution for professional engineers and designers. As a magnetic rod with significant force (approx. 0.82 kg), this product is available off-the-shelf from our warehouse in Poland, ensuring lightning-fast order fulfillment. Moreover, its Ni-Cu-Ni coating effectively protects it against corrosion in standard operating conditions, guaranteeing an aesthetic appearance and durability for years.
This model is perfect for building electric motors, advanced sensors, and efficient magnetic separators, where field concentration on a small surface counts. Thanks to the high power of 8.01 N with a weight of only 0.88 g, this rod is indispensable in electronics and wherever low weight is crucial.
Since our magnets have a tolerance of ±0.1mm, the recommended way is to glue them into holes with a slightly larger diameter (e.g., 10.1 mm) using two-component epoxy glues. To ensure stability in automation, anaerobic resins are used, which are safe for nickel and fill the gap, guaranteeing high repeatability of the connection.
Magnets N38 are strong enough for 90% of applications in modeling and machine building, where extreme miniaturization with maximum force is not required. If you need even stronger magnets in the same volume (Ø10x1.5), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard in continuous sale in our store.
This model is characterized by dimensions Ø10x1.5 mm, which, at a weight of 0.88 g, makes it an element with high magnetic energy density. The key parameter here is the lifting capacity amounting to approximately 0.82 kg (force ~8.01 N), which, with such defined dimensions, proves the high power of the NdFeB material. The product has a [NiCuNi] coating, which protects the surface against external factors, giving it an aesthetic, silvery shine.
This cylinder is magnetized axially (along the height of 1.5 mm), which means that the N and S poles are located on the flat, circular surfaces. Such an arrangement is most desirable when connecting magnets in stacks (e.g., in filters) or when mounting in sockets at the bottom of a hole. On request, we can also produce versions magnetized diametrically if your project requires it.

Strengths and weaknesses of rare earth magnets.

Benefits

Apart from their superior magnetic energy, neodymium magnets have these key benefits:
  • They do not lose magnetism, even during nearly ten years – the reduction in power is only ~1% (according to tests),
  • They are resistant to demagnetization induced by external disturbances,
  • Thanks to the reflective finish, the plating of nickel, gold-plated, or silver-plated gives an modern appearance,
  • The surface of neodymium magnets generates a unique magnetic field – this is a distinguishing feature,
  • Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
  • Thanks to versatility in constructing and the capacity to modify to client solutions,
  • Key role in advanced technology sectors – they are utilized in hard drives, drive modules, medical devices, as well as technologically advanced constructions.
  • Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications

Weaknesses

Characteristics of disadvantages of neodymium magnets: tips and applications.
  • To avoid cracks under impact, we recommend using special steel holders. Such a solution secures the magnet and simultaneously improves its durability.
  • Neodymium magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of power (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
  • They oxidize in a humid environment - during use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
  • We suggest cover - magnetic mount, due to difficulties in realizing nuts inside the magnet and complex shapes.
  • Health risk to health – tiny shards of magnets can be dangerous, if swallowed, which becomes key in the aspect of protecting the youngest. It is also worth noting that small elements of these magnets can complicate diagnosis medical when they are in the body.
  • Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications

Pull force analysis

Magnetic strength at its maximum – what it depends on?

Magnet power is the result of a measurement for optimal configuration, including:
  • on a block made of structural steel, effectively closing the magnetic flux
  • whose thickness equals approx. 10 mm
  • characterized by lack of roughness
  • without the slightest air gap between the magnet and steel
  • under vertical force vector (90-degree angle)
  • at ambient temperature approx. 20 degrees Celsius

What influences lifting capacity in practice

Bear in mind that the working load may be lower influenced by elements below, starting with the most relevant:
  • Distance – existence of foreign body (paint, dirt, air) interrupts the magnetic circuit, which lowers power steeply (even by 50% at 0.5 mm).
  • Angle of force application – highest force is reached only during pulling at a 90° angle. The force required to slide of the magnet along the surface is typically several times smaller (approx. 1/5 of the lifting capacity).
  • Metal thickness – thin material does not allow full use of the magnet. Part of the magnetic field penetrates through instead of generating force.
  • Plate material – low-carbon steel gives the best results. Alloy admixtures reduce magnetic permeability and holding force.
  • Surface structure – the more even the plate, the larger the contact zone and higher the lifting capacity. Roughness acts like micro-gaps.
  • Temperature – heating the magnet causes a temporary drop of induction. It is worth remembering the thermal limit for a given model.

Lifting capacity was measured with the use of a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, in contrast under attempts to slide the magnet the holding force is lower. Additionally, even a minimal clearance between the magnet’s surface and the plate lowers the lifting capacity.

Safe handling of neodymium magnets
Safe distance

Avoid bringing magnets close to a wallet, laptop, or TV. The magnetic field can irreversibly ruin these devices and wipe information from cards.

Warning for allergy sufferers

It is widely known that the nickel plating (standard magnet coating) is a potent allergen. If you have an allergy, avoid touching magnets with bare hands or choose coated magnets.

Health Danger

Life threat: Strong magnets can turn off heart devices and defibrillators. Do not approach if you have electronic implants.

Do not underestimate power

Before use, read the rules. Uncontrolled attraction can destroy the magnet or injure your hand. Think ahead.

Do not give to children

NdFeB magnets are not toys. Swallowing a few magnets can lead to them attracting across intestines, which constitutes a direct threat to life and requires immediate surgery.

Precision electronics

Navigation devices and mobile phones are highly sensitive to magnetic fields. Direct contact with a powerful NdFeB magnet can ruin the internal compass in your phone.

Shattering risk

Despite the nickel coating, the material is delicate and not impact-resistant. Avoid impacts, as the magnet may crumble into sharp, dangerous pieces.

Do not overheat magnets

Keep cool. NdFeB magnets are sensitive to temperature. If you need resistance above 80°C, look for HT versions (H, SH, UH).

Crushing force

Mind your fingers. Two powerful magnets will snap together immediately with a force of massive weight, crushing anything in their path. Be careful!

Do not drill into magnets

Fire hazard: Neodymium dust is highly flammable. Do not process magnets in home conditions as this risks ignition.

Attention! Looking for details? Read our article: Why are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98