MW 10x1.5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010003
GTIN: 5906301810001
Diameter Ø [±0,1 mm]
10 mm
Height [±0,1 mm]
1.5 mm
Weight
0.88 g
Magnetization Direction
↑ axial
Load capacity
0.83 kg / 8.14 N
Magnetic Induction
178.06 mT
Coating
[NiCuNi] nickel
0.431 ZŁ with VAT / pcs + price for transport
0.350 ZŁ net + 23% VAT / pcs
0.320 ZŁ net was the lowest price in the last 30 days
bulk discounts:
Need more?Need help making a decision?
Give us a call
+48 22 499 98 98
otherwise let us know via
inquiry form
the contact form page.
Strength as well as structure of magnets can be analyzed with our
magnetic mass calculator.
Same-day shipping for orders placed before 14:00.
MW 10x1.5 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of epoxy to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as silver, to protect them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their consistent magnetic energy, neodymium magnets have these key benefits:
- They do not lose their strength nearly ten years – the loss of power is only ~1% (based on measurements),
- They are highly resistant to demagnetization caused by external magnetic sources,
- In other words, due to the glossy gold coating, the magnet obtains an stylish appearance,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which expands their application range,
- Key role in cutting-edge sectors – they are utilized in HDDs, electric motors, healthcare devices or even sophisticated instruments,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,
Disadvantages of magnetic elements:
- They can break when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall durability,
- Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to wet conditions can oxidize. Therefore, for outdoor applications, we advise waterproof types made of plastic,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is restricted,
- Potential hazard linked to microscopic shards may arise, especially if swallowed, which is notable in the family environments. Additionally, small elements from these devices can disrupt scanning once in the system,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Maximum magnetic pulling force – what it depends on?
The given holding capacity of the magnet corresponds to the highest holding force, calculated under optimal conditions, that is:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a refined outer layer
- in conditions of no clearance
- with vertical force applied
- in normal thermal conditions
Practical lifting capacity: influencing factors
In practice, the holding capacity of a magnet is affected by the following aspects, in descending order of importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed with the use of a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, however under attempts to slide the magnet the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate decreases the lifting capacity.
Handle with Care: Neodymium Magnets
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Magnets made of neodymium are characterized by their fragility, which can cause them to crumble.
Neodymium magnets are characterized by considerable fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Maintain neodymium magnets far from children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when they attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Pay attention!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are powerful neodymium magnets?.
