MW 10x1.5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010003
GTIN/EAN: 5906301810001
Diameter Ø
10 mm [±0,1 mm]
Height
1.5 mm [±0,1 mm]
Weight
0.88 g
Magnetization Direction
↑ axial
Load capacity
0.82 kg / 8.01 N
Magnetic Induction
178.06 mT / 1781 Gs
Coating
[NiCuNi] Nickel
0.431 ZŁ with VAT / pcs + price for transport
0.350 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
otherwise let us know via
our online form
through our site.
Force and shape of neodymium magnets can be analyzed on our
force calculator.
Order by 14:00 and we’ll ship today!
Product card - MW 10x1.5 / N38 - cylindrical magnet
Specification / characteristics - MW 10x1.5 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010003 |
| GTIN/EAN | 5906301810001 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 10 mm [±0,1 mm] |
| Height | 1.5 mm [±0,1 mm] |
| Weight | 0.88 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.82 kg / 8.01 N |
| Magnetic Induction ~ ? | 178.06 mT / 1781 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the assembly - technical parameters
These values constitute the result of a physical simulation. Values were calculated on models for the class Nd2Fe14B. Operational parameters might slightly deviate from the simulation results. Please consider these calculations as a preliminary roadmap during assembly planning.
Table 1: Static pull force (pull vs distance) - characteristics
MW 10x1.5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
1780 Gs
178.0 mT
|
0.82 kg / 1.81 lbs
820.0 g / 8.0 N
|
low risk |
| 1 mm |
1557 Gs
155.7 mT
|
0.63 kg / 1.38 lbs
627.2 g / 6.2 N
|
low risk |
| 2 mm |
1253 Gs
125.3 mT
|
0.41 kg / 0.90 lbs
406.2 g / 4.0 N
|
low risk |
| 3 mm |
958 Gs
95.8 mT
|
0.24 kg / 0.52 lbs
237.4 g / 2.3 N
|
low risk |
| 5 mm |
530 Gs
53.0 mT
|
0.07 kg / 0.16 lbs
72.8 g / 0.7 N
|
low risk |
| 10 mm |
140 Gs
14.0 mT
|
0.01 kg / 0.01 lbs
5.1 g / 0.1 N
|
low risk |
| 15 mm |
52 Gs
5.2 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
low risk |
| 20 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
low risk |
| 30 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
Table 2: Slippage load (vertical surface)
MW 10x1.5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.16 kg / 0.36 lbs
164.0 g / 1.6 N
|
| 1 mm | Stal (~0.2) |
0.13 kg / 0.28 lbs
126.0 g / 1.2 N
|
| 2 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
82.0 g / 0.8 N
|
| 3 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MW 10x1.5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.25 kg / 0.54 lbs
246.0 g / 2.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.16 kg / 0.36 lbs
164.0 g / 1.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 0.18 lbs
82.0 g / 0.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MW 10x1.5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 0.18 lbs
82.0 g / 0.8 N
|
| 1 mm |
|
0.21 kg / 0.45 lbs
205.0 g / 2.0 N
|
| 2 mm |
|
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
|
| 3 mm |
|
0.62 kg / 1.36 lbs
615.0 g / 6.0 N
|
| 5 mm |
|
0.82 kg / 1.81 lbs
820.0 g / 8.0 N
|
| 10 mm |
|
0.82 kg / 1.81 lbs
820.0 g / 8.0 N
|
| 11 mm |
|
0.82 kg / 1.81 lbs
820.0 g / 8.0 N
|
| 12 mm |
|
0.82 kg / 1.81 lbs
820.0 g / 8.0 N
|
Table 5: Thermal stability (material behavior) - power drop
MW 10x1.5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.82 kg / 1.81 lbs
820.0 g / 8.0 N
|
OK |
| 40 °C | -2.2% |
0.80 kg / 1.77 lbs
802.0 g / 7.9 N
|
OK |
| 60 °C | -4.4% |
0.78 kg / 1.73 lbs
783.9 g / 7.7 N
|
|
| 80 °C | -6.6% |
0.77 kg / 1.69 lbs
765.9 g / 7.5 N
|
|
| 100 °C | -28.8% |
0.58 kg / 1.29 lbs
583.8 g / 5.7 N
|
Table 6: Two magnets (repulsion) - forces in the system
MW 10x1.5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.53 kg / 3.38 lbs
3 185 Gs
|
0.23 kg / 0.51 lbs
230 g / 2.3 N
|
N/A |
| 1 mm |
1.38 kg / 3.03 lbs
3 371 Gs
|
0.21 kg / 0.45 lbs
206 g / 2.0 N
|
1.24 kg / 2.73 lbs
~0 Gs
|
| 2 mm |
1.17 kg / 2.59 lbs
3 114 Gs
|
0.18 kg / 0.39 lbs
176 g / 1.7 N
|
1.06 kg / 2.33 lbs
~0 Gs
|
| 3 mm |
0.96 kg / 2.12 lbs
2 817 Gs
|
0.14 kg / 0.32 lbs
144 g / 1.4 N
|
0.86 kg / 1.91 lbs
~0 Gs
|
| 5 mm |
0.59 kg / 1.29 lbs
2 201 Gs
|
0.09 kg / 0.19 lbs
88 g / 0.9 N
|
0.53 kg / 1.16 lbs
~0 Gs
|
| 10 mm |
0.14 kg / 0.30 lbs
1 060 Gs
|
0.02 kg / 0.05 lbs
20 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 20 mm |
0.01 kg / 0.02 lbs
281 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
26 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MW 10x1.5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 3.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 2.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 2.0 cm |
| Remote | 50 Gs (5.0 mT) | 2.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MW 10x1.5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
30.91 km/h
(8.58 m/s)
|
0.03 J | |
| 30 mm |
53.32 km/h
(14.81 m/s)
|
0.10 J | |
| 50 mm |
68.84 km/h
(19.12 m/s)
|
0.16 J | |
| 100 mm |
97.35 km/h
(27.04 m/s)
|
0.32 J |
Table 9: Anti-corrosion coating durability
MW 10x1.5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MW 10x1.5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 717 Mx | 17.2 µWb |
| Pc Coefficient | 0.22 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MW 10x1.5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.82 kg | Standard |
| Water (riverbed) |
0.94 kg
(+0.12 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical wall, the magnet holds just a fraction of its nominal pull.
2. Steel thickness impact
*Thin metal sheet (e.g. computer case) significantly reduces the holding force.
3. Power loss vs temp
*For standard magnets, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.22
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View more products
Strengths and weaknesses of rare earth magnets.
Benefits
- They do not lose magnetism, even during nearly ten years – the reduction in power is only ~1% (according to tests),
- They are resistant to demagnetization induced by external disturbances,
- Thanks to the reflective finish, the plating of nickel, gold-plated, or silver-plated gives an modern appearance,
- The surface of neodymium magnets generates a unique magnetic field – this is a distinguishing feature,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
- Thanks to versatility in constructing and the capacity to modify to client solutions,
- Key role in advanced technology sectors – they are utilized in hard drives, drive modules, medical devices, as well as technologically advanced constructions.
- Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications
Weaknesses
- To avoid cracks under impact, we recommend using special steel holders. Such a solution secures the magnet and simultaneously improves its durability.
- Neodymium magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of power (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- They oxidize in a humid environment - during use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
- We suggest cover - magnetic mount, due to difficulties in realizing nuts inside the magnet and complex shapes.
- Health risk to health – tiny shards of magnets can be dangerous, if swallowed, which becomes key in the aspect of protecting the youngest. It is also worth noting that small elements of these magnets can complicate diagnosis medical when they are in the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Pull force analysis
Magnetic strength at its maximum – what it depends on?
- on a block made of structural steel, effectively closing the magnetic flux
- whose thickness equals approx. 10 mm
- characterized by lack of roughness
- without the slightest air gap between the magnet and steel
- under vertical force vector (90-degree angle)
- at ambient temperature approx. 20 degrees Celsius
What influences lifting capacity in practice
- Distance – existence of foreign body (paint, dirt, air) interrupts the magnetic circuit, which lowers power steeply (even by 50% at 0.5 mm).
- Angle of force application – highest force is reached only during pulling at a 90° angle. The force required to slide of the magnet along the surface is typically several times smaller (approx. 1/5 of the lifting capacity).
- Metal thickness – thin material does not allow full use of the magnet. Part of the magnetic field penetrates through instead of generating force.
- Plate material – low-carbon steel gives the best results. Alloy admixtures reduce magnetic permeability and holding force.
- Surface structure – the more even the plate, the larger the contact zone and higher the lifting capacity. Roughness acts like micro-gaps.
- Temperature – heating the magnet causes a temporary drop of induction. It is worth remembering the thermal limit for a given model.
Lifting capacity was measured with the use of a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, in contrast under attempts to slide the magnet the holding force is lower. Additionally, even a minimal clearance between the magnet’s surface and the plate lowers the lifting capacity.
Safe handling of neodymium magnets
Safe distance
Avoid bringing magnets close to a wallet, laptop, or TV. The magnetic field can irreversibly ruin these devices and wipe information from cards.
Warning for allergy sufferers
It is widely known that the nickel plating (standard magnet coating) is a potent allergen. If you have an allergy, avoid touching magnets with bare hands or choose coated magnets.
Health Danger
Life threat: Strong magnets can turn off heart devices and defibrillators. Do not approach if you have electronic implants.
Do not underestimate power
Before use, read the rules. Uncontrolled attraction can destroy the magnet or injure your hand. Think ahead.
Do not give to children
NdFeB magnets are not toys. Swallowing a few magnets can lead to them attracting across intestines, which constitutes a direct threat to life and requires immediate surgery.
Precision electronics
Navigation devices and mobile phones are highly sensitive to magnetic fields. Direct contact with a powerful NdFeB magnet can ruin the internal compass in your phone.
Shattering risk
Despite the nickel coating, the material is delicate and not impact-resistant. Avoid impacts, as the magnet may crumble into sharp, dangerous pieces.
Do not overheat magnets
Keep cool. NdFeB magnets are sensitive to temperature. If you need resistance above 80°C, look for HT versions (H, SH, UH).
Crushing force
Mind your fingers. Two powerful magnets will snap together immediately with a force of massive weight, crushing anything in their path. Be careful!
Do not drill into magnets
Fire hazard: Neodymium dust is highly flammable. Do not process magnets in home conditions as this risks ignition.
