MW 10x1.5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010003
GTIN: 5906301810001
Diameter Ø [±0,1 mm]
10 mm
Height [±0,1 mm]
1.5 mm
Weight
0.88 g
Magnetization Direction
↑ axial
Load capacity
0.83 kg / 8.14 N
Magnetic Induction
178.06 mT
Coating
[NiCuNi] nickel
0.43 ZŁ with VAT / pcs + price for transport
0.35 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Contact us by phone
+48 22 499 98 98
otherwise get in touch through
form
the contact form page.
Parameters as well as form of neodymium magnets can be estimated on our
online calculation tool.
Same-day processing for orders placed before 14:00.
MW 10x1.5 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of epoxy to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as epoxy, to shield them from environmental factors and prolong their durability. High temperatures exceeding 130°C can result in a loss of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their durability, neodymium magnets are valued for these benefits:
- They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (in laboratory conditions),
- Their ability to resist magnetic interference from external fields is impressive,
- The use of a mirror-like nickel surface provides a eye-catching finish,
- The outer field strength of the magnet shows remarkable magnetic properties,
- With the right combination of magnetic alloys, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the form),
- The ability for precise shaping and adaptation to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
- Wide application in modern technologies – they are used in data storage devices, electric drives, healthcare devices or even high-tech tools,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,
Disadvantages of neodymium magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks and additionally enhances its overall durability,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a moist environment. If exposed to rain, we recommend using waterproof magnets, such as those made of non-metallic materials,
- Limited ability to create precision features in the magnet – the use of a magnetic holder is recommended,
- Possible threat related to magnet particles may arise, when consumed by mistake, which is notable in the protection of children. Additionally, miniature parts from these magnets may hinder health screening if inside the body,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Exercise Caution with Neodymium Magnets
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
If joining of neodymium magnets is not under control, then they may crumble and crack. You can't approach them to each other. At a distance less than 10 cm you should hold them extremely firmly.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Keep neodymium magnets far from children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Magnets made of neodymium are highly susceptible to damage, leading to their cracking.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Warning!
In order to illustrate why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.