tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our proposal. All magnesy neodymowe on our website are available for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnets for water searching F300 GOLD

Where to purchase strong neodymium magnet? Magnet holders in airtight, solid steel casing are ideally suited for use in challenging climate conditions, including snow and rain check...

magnetic holders

Holders with magnets can be used to improve manufacturing, underwater discoveries, or searching for meteors from gold see more...

Enjoy delivery of your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 10x1.5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010003

GTIN: 5906301810001

5

Diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

1.5 mm

Weight

0.88 g

Magnetization Direction

↑ axial

Load capacity

0.83 kg / 8.14 N

Magnetic Induction

178.06 mT

Coating

[NiCuNi] nickel

0.43 with VAT / pcs + price for transport

0.35 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.35 ZŁ
0.43 ZŁ
price from 2600 pcs
0.31 ZŁ
0.38 ZŁ
price from 5200 pcs
0.30 ZŁ
0.37 ZŁ

Not sure about your choice?

Give us a call +48 22 499 98 98 alternatively let us know by means of inquiry form the contact section.
Force along with form of a magnet can be calculated using our our magnetic calculator.

Same-day shipping for orders placed before 14:00.

MW 10x1.5 / N38 - cylindrical magnet

Specification/characteristics MW 10x1.5 / N38 - cylindrical magnet
properties
values
Cat. no.
010003
GTIN
5906301810001
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
10 mm [±0,1 mm]
Height
1.5 mm [±0,1 mm]
Weight
0.88 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.83 kg / 8.14 N
Magnetic Induction ~ ?
178.06 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 10x1.5 / N38 are magnets created of neodymium in a cylinder form. They are known for their very strong magnetic properties, which outperform ordinary iron magnets. Thanks to their strength, they are often employed in products that require powerful holding. The standard temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their resistance to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet named MW 10x1.5 / N38 with a magnetic force 0.83 kg has a weight of only 0.88 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of silver to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the current information as well as offers, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are practical in many applications, they can also pose certain risk. Due to their significant magnetic power, they can attract metallic objects with uncontrolled force, which can lead to crushing skin as well as other surfaces, especially fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the very strong magnets on the market. They are produced through a complicated sintering process, which involves melting specific alloys of neodymium with additional metals and then shaping and heat treating. Their unmatched magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as silver, to protect them from external factors and prolong their durability. Temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.
A neodymium magnet N52 and N50 is a strong and powerful metallic component in the form of a cylinder, providing strong holding power and universal applicability. Very good price, availability, resistance and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional magnetic power, neodymium magnets offer the following advantages:

  • They do not lose their power approximately 10 years – the loss of strength is only ~1% (theoretically),
  • They protect against demagnetization induced by surrounding magnetic influence effectively,
  • By applying a reflective layer of silver, the element gains a modern look,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • With the right combination of magnetic alloys, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the form),
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which expands their usage potential,
  • Significant impact in cutting-edge sectors – they are used in HDDs, rotating machines, clinical machines or even technologically developed systems,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture and strengthens its overall strength,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to moisture can corrode. Therefore, for outdoor applications, we advise waterproof types made of plastic,
  • Limited ability to create threads in the magnet – the use of a housing is recommended,
  • Health risk due to small fragments may arise, if ingested accidentally, which is crucial in the context of child safety. Additionally, minuscule fragments from these assemblies might disrupt scanning after being swallowed,
  • Due to a complex production process, their cost is above average,

Precautions

Magnets made of neodymium are highly fragile, they easily crack as well as can become damaged.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets may crack or alternatively crumble with uncontrolled connecting to each other. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

 It is essential to maintain neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Safety precautions!

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98