SM 25x350 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130355
GTIN: 5906301813033
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
350 mm
Weight
0.01 g
1057.80 ZŁ with VAT / pcs + price for transport
860.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Call us
+48 888 99 98 98
if you prefer contact us via
form
through our site.
Parameters as well as structure of magnets can be calculated on our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
SM 25x350 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their consistent magnetism, neodymium magnets have these key benefits:
- They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (according to literature),
- Their ability to resist magnetic interference from external fields is notable,
- Thanks to the shiny finish and nickel coating, they have an elegant appearance,
- The outer field strength of the magnet shows advanced magnetic properties,
- Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which expands their functional possibilities,
- Important function in advanced technical fields – they serve a purpose in computer drives, electric motors, clinical machines or even sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them useful in small systems
Disadvantages of magnetic elements:
- They may fracture when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture while also strengthens its overall strength,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of synthetic coating for outdoor use,
- Limited ability to create internal holes in the magnet – the use of a magnetic holder is recommended,
- Possible threat from tiny pieces may arise, if ingested accidentally, which is crucial in the context of child safety. Furthermore, miniature parts from these devices may disrupt scanning after being swallowed,
- In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,
Highest magnetic holding force – what affects it?
The given holding capacity of the magnet means the highest holding force, calculated in ideal conditions, specifically:
- with mild steel, serving as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- in conditions of no clearance
- with vertical force applied
- in normal thermal conditions
Practical aspects of lifting capacity – factors
Practical lifting force is determined by factors, by priority:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under parallel forces the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet’s surface and the plate lowers the lifting capacity.
Handle with Care: Neodymium Magnets
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from GPS and smartphones.
Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can demagnetize at high temperatures.
Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Magnets made of neodymium are delicate as well as can easily break and shatter.
Neodymium magnets are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Maintain neodymium magnets far from youngest children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
If joining of neodymium magnets is not under control, at that time they may crumble and also crack. You can't move them to each other. At a distance less than 10 cm you should hold them very strongly.
Safety precautions!
So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are very powerful neodymium magnets?.
