tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. All "neodymium magnets" in our store are in stock for immediate purchase (check the list). See the magnet pricing for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in airtight, solid steel casing are excellent for use in difficult climate conditions, including in the rain and snow more...

magnets with holders

Holders with magnets can be used to enhance manufacturing, exploring underwater areas, or locating meteors from gold see more...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x350 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130355

GTIN: 5906301813033

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

350 mm

Weight

0.01 g

1 057.80 with VAT / pcs + price for transport

860.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
860.00 ZŁ
1 057.80 ZŁ
price from 3 pcs
817.00 ZŁ
1 004.91 ZŁ
price from 6 pcs
774.00 ZŁ
952.02 ZŁ

Not sure where to buy?

Contact us by phone +48 888 99 98 98 or get in touch through contact form the contact section.
Strength as well as appearance of magnets can be verified with our power calculator.

Order by 14:00 and we’ll ship today!

SM 25x350 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x350 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130355
GTIN
5906301813033
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
350 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, which are welded in a construction made of stainless steel mostly AISI304. As a result, it is possible to efficiently separate ferromagnetic elements from the mixture. An important element of its operation is the use of repulsion of magnetic poles N and S, which allows magnetic substances to be collected. The thickness of the magnet and its structure's pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic particles. If the cans are made from ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in the food sector for the elimination of metallic contaminants, such as iron fragments or iron dust. Our rollers are built from durable acid-resistant steel, EN 1.4301, intended for contact with food.
Magnetic rollers, often called cylindrical magnets, are employed in food production, metal separation as well as waste processing. They help in eliminating iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers consist of a neodymium magnet embedded in a tube made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded holes - 18 mm, which enables quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in materials, N42 and N52.
Often it is believed that the stronger the magnet, the more efficient it is. But, the effectiveness of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines are short. Otherwise, when the magnet is thick, the force lines are longer and extend over a greater distance.
For making the casings of magnetic separators - rollers, usually stainless steel is used, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water environment, type AISI 316 steel is recommended thanks to its outstanding corrosion resistance.
Magnetic rollers stand out for their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other separators that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise amongst others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. However, some of the downsides may involve the requirement for frequent cleaning, greater weight, and potential installation difficulties.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth regularly cleaning them from contaminants, avoiding extreme temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Testing of the rollers is recommended be carried out once every 24 months. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They do not lose their power around ten years – the reduction of strength is only ~1% (according to tests),
  • They remain magnetized despite exposure to magnetic surroundings,
  • Because of the reflective layer of gold, the component looks visually appealing,
  • They have exceptional magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • With the option for customized forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Key role in advanced technical fields – they find application in data storage devices, electric motors, medical equipment along with high-tech tools,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time strengthens its overall strength,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a wet environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of non-metallic materials,
  • Limited ability to create internal holes in the magnet – the use of a mechanical support is recommended,
  • Safety concern related to magnet particles may arise, in case of ingestion, which is crucial in the health of young users. Furthermore, minuscule fragments from these devices have the potential to complicate medical imaging after being swallowed,
  • Due to a complex production process, their cost is above average,

Be Cautious with Neodymium Magnets

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

If the joining of neodymium magnets is not controlled, then they may crumble and also crack. You can't move them to each other. At a distance less than 10 cm you should have them extremely firmly.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets made of neodymium are highly susceptible to damage, leading to breaking.

Neodymium magnets are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Exercise caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98