tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our store's offer. All "magnets" on our website are available for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnet for treasure hunters F200 GOLD

Where to buy very strong neodymium magnet? Holders with magnets in solid and airtight steel enclosure are perfect for use in variable and difficult weather conditions, including in the rain and snow more information...

magnetic holders

Holders with magnets can be used to improve production, underwater exploration, or finding meteors from gold check...

Order is shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x350 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130355

GTIN: 5906301813033

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

350 mm

Weight

0.01 g

1 057.80 with VAT / pcs + price for transport

860.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
860.00 ZŁ
1 057.80 ZŁ
price from 3 pcs
860.00 ZŁ
1 057.80 ZŁ
price from 6 pcs
860.00 ZŁ
1 057.80 ZŁ

Need help making a decision?

Give us a call +48 888 99 98 98 or contact us by means of inquiry form our website.
Force as well as form of magnets can be reviewed with our online calculation tool.

Same-day shipping for orders placed before 14:00.

SM 25x350 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x350 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130355
GTIN
5906301813033
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
350 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, placed in a casing made of stainless steel usually AISI304. As a result, it is possible to efficiently segregate ferromagnetic particles from other materials. A fundamental component of its operation is the use of repulsion of magnetic poles N and S, which enables magnetic substances to be attracted. The thickness of the embedded magnet and its structure pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic particles. If the cans are ferromagnetic, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers find application in the food sector to clear metallic contaminants, such as iron fragments or iron dust. Our rods are constructed from acid-resistant steel, EN 1.4301, intended for contact with food.
Magnetic rollers, often called magnetic separators, are employed in food production, metal separation as well as waste processing. They help in eliminating iron dust during the process of separating metals from other wastes.
Our magnetic rollers are built with neodymium magnets embedded in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded holes - 18 mm, allowing for easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the greater the magnet's power, the more effective. But, the effectiveness of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines are more compressed. Otherwise, in the case of a thicker magnet, the force lines will be longer and extend over a greater distance.
For creating the casings of magnetic separators - rollers, usually stainless steel is used, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater environment, type AISI 316 steel is highly recommended thanks to its exceptional corrosion resistance.
Magnetic rollers are characterized by their specific arrangement of poles and their capability to attract magnetic substances directly onto their surface, as opposed to other devices that often use complex filtration systems.
Technical designations and terms related to magnetic separators include amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. However, some of the downsides may involve the requirement for frequent cleaning, greater weight, and potential installation difficulties.
For proper maintenance of neodymium magnetic rollers, it’s worth regularly cleaning them from deposits, avoiding extreme temperatures above 80 degrees, and protecting them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Magnetic field measurements should be carried out every two years. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their remarkable pulling force, neodymium magnets offer the following advantages:

  • They virtually do not lose strength, because even after 10 years, the performance loss is only ~1% (according to literature),
  • They protect against demagnetization induced by ambient magnetic influence effectively,
  • Thanks to the polished finish and nickel coating, they have an elegant appearance,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • The ability for custom shaping as well as customization to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
  • Wide application in advanced technical fields – they find application in data storage devices, electric drives, diagnostic apparatus along with sophisticated instruments,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time strengthens its overall resistance,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a damp environment. For outdoor use, we recommend using encapsulated magnets, such as those made of plastic,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is difficult,
  • Health risk due to small fragments may arise, especially if swallowed, which is notable in the context of child safety. Moreover, miniature parts from these assemblies may complicate medical imaging after being swallowed,
  • Due to expensive raw materials, their cost is above average,

Detachment force of the magnet in optimal conditionswhat it depends on?

The given strength of the magnet represents the optimal strength, measured in ideal conditions, specifically:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a polished side
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet depends on in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under perpendicular forces, whereas under parallel forces the holding force is lower. In addition, even a slight gap {between} the magnet’s surface and the plate lowers the lifting capacity.

Safety Precautions

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Magnets made of neodymium are characterized by being fragile, which can cause them to crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a serious injury may occur. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Exercise caution!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98