e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. All magnesy in our store are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to purchase powerful magnet? Magnetic holders in airtight and durable enclosure are ideally suited for use in variable and difficult weather, including during rain and snow more...

magnetic holders

Holders with magnets can be used to facilitate production, exploring underwater areas, or locating meteorites from gold read...

Enjoy delivery of your order if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMP 107x40 [M8+M10] GW F400 Lina / N38 - search holder

search holder

Catalog no 210384

GTIN: 5906301814030

5

Diameter Ø [±0,1 mm]

107 mm

Height [±0,1 mm]

40 mm

Weight

2350 g

Load capacity

480 kg / 4707.19 N

Coating

[NiCuNi] nickel

450.00 with VAT / pcs + price for transport

365.85 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
365.85 ZŁ
450.00 ZŁ
price from 3 pcs
343.90 ZŁ
423.00 ZŁ
price from 7 pcs
321.95 ZŁ
396.00 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

UMP 107x40 [M8+M10] GW F400 Lina / N38 - search holder

Specification/characteristics UMP 107x40 [M8+M10] GW F400 Lina / N38 - search holder
properties
values
Cat. no.
210384
GTIN
5906301814030
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
107 mm [±0,1 mm]
Height
40 mm [±0,1 mm]
Weight
2350 g [±0,1 mm]
Load capacity ~ ?
480 kg / 4707.19 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

For exploring rivers and lakes, we recommend UMP 107x40 [M8+M10] GW F400 Lina / N38, which is exceptionally strong and has an impressive magnetic pulling force of approximately ~480 kg. This model is ideal for locating metal objects at the bottom of water bodies.
Magnetic holders are highly effective for retrieving in water due to their high lifting force. UMP 107x40 [M8+M10] GW F400 Lina / N38 weighing 2350 grams with a pulling force of ~480 kg is a perfect solution for recovering metallic findings.
When choosing a magnet for underwater searches, you should pay attention to the number of Gauss or Tesla value, which determines the attraction strength. UMP 107x40 [M8+M10] GW F400 Lina / N38 has a pulling force of approximately ~480 kg, making it a powerful tool for retrieving heavier items. Remember that the full power is achieved with the upper holder, while the side attachment offers only 10%-25% of that power.
The sideways force of a magnetic holder is typically lower than the adhesive force because it depends on the fraction of the magnetic field that interacts with the metal surface. In the case of UMP 107x40 [M8+M10] GW F400 Lina / N38 with a pulling force of ~480 kg, maximum power are achieved with the upper holder, while the side attachment offers only one-fourth to one-quarter of the declared force.
he attraction force was measured under laboratory conditions, using a smooth S235 low-carbon steel plate with a thickness of 10 mm, with the application of pulling force in a perpendicular manner. In a situation where the sliding occurs, the magnet's lifting capacity can be 5x times lower! Any gap between the magnet and the plate can result in a reduction in the attraction force.
magnetic pot strength F200 GOLD F300 GOLD

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time - after approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by very high magnetic induction on the surface of the magnet and can operate (depending on the shape) even at temperatures of 230°C or higher...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in many variants of shapes or sizes, which expands the range of their possible uses.
  • Significant importance in modern technologies – are used in hard drives, electric motors, medical devices or very advanced devices.

Disadvantages of neodymium magnets:

  • They can break as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Health risk arising from small pieces of magnets are risky, if swallowed, which is crucial in the context of children's health. Furthermore, small elements of these products are able to complicate diagnosis after entering the body.

Exercise Caution with Neodymium Magnets

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are characterized by their fragility, which can cause them to shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will crack or crumble with uncontrolled joining to each other. You can't move them to each other. At a distance less than 10 cm you should hold them very firmly.

 Maintain neodymium magnets away from children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Safety precautions!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98