e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. Practically all magnesy in our store are available for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnets for searching F200 GOLD

Where to buy powerful magnet? Holders with magnets in solid and airtight steel enclosure are excellent for use in difficult weather, including during rain and snow see...

magnetic holders

Holders with magnets can be used to enhance production, underwater exploration, or searching for space rocks from gold more information...

Enjoy delivery of your order on the same day by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available Ships in 2 days

UMP 107x40 [M8+M10] GW F400 Lina / N38 - search holder

search holder

Catalog no 210384

GTIN: 5906301814030

5

Diameter Ø [±0,1 mm]

107 mm

Height [±0,1 mm]

40 mm

Weight

2350 g

Load capacity

480 kg / 4707.19 N

Coating

[NiCuNi] nickel

450.00 with VAT / pcs + price for transport

365.85 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
365.85 ZŁ
450.00 ZŁ
price from 5 pcs
343.90 ZŁ
423.00 ZŁ
price from 10 pcs
321.95 ZŁ
396.00 ZŁ

Want to negotiate?

Call us +48 22 499 98 98 alternatively send us a note via request form the contact section.
Weight as well as appearance of neodymium magnets can be estimated on our magnetic mass calculator.

Orders placed before 14:00 will be shipped the same business day.

UMP 107x40 [M8+M10] GW F400 Lina / N38 - search holder

Specification/characteristics UMP 107x40 [M8+M10] GW F400 Lina / N38 - search holder
properties
values
Cat. no.
210384
GTIN
5906301814030
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
107 mm [±0,1 mm]
Height
40 mm [±0,1 mm]
Weight
2350 g [±0,1 mm]
Load capacity ~ ?
480 kg / 4707.19 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their notable holding force, neodymium magnets have these key benefits:

  • They do not lose their even during approximately 10 years – the decrease of power is only ~1% (based on measurements),
  • They remain magnetized despite exposure to strong external fields,
  • By applying a bright layer of gold, the element gains a clean look,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • The ability for precise shaping or adjustment to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
  • Important function in modern technologies – they find application in data storage devices, electromechanical systems, healthcare devices and other advanced devices,
  • Thanks to their power density, small magnets offer high magnetic performance, with minimal size,

Disadvantages of magnetic elements:

  • They can break when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and enhances its overall resistance,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to wet conditions can degrade. Therefore, for outdoor applications, we advise waterproof types made of coated materials,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
  • Potential hazard due to small fragments may arise, when consumed by mistake, which is notable in the family environments. Furthermore, tiny components from these devices may interfere with diagnostics once in the system,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Optimal lifting capacity of a neodymium magnetwhat affects it?

The given pulling force of the magnet means the maximum force, assessed in a perfect environment, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • in normal thermal conditions

Lifting capacity in practice – influencing factors

The lifting capacity of a magnet is determined by in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under parallel forces the load capacity is reduced by as much as 5 times. Moreover, even a slight gap {between} the magnet’s surface and the plate reduces the holding force.

Handle Neodymium Magnets Carefully

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnetic are extremely fragile, resulting in breaking.

Neodymium magnetic are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

  Magnets are not toys, youngest should not play with them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Never bring neodymium magnets close to a phone and GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Safety precautions!

In order to illustrate why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98