MW 12x2 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010017
GTIN/EAN: 5906301810162
Diameter Ø
12 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
1.7 g
Magnetization Direction
↑ axial
Load capacity
1.39 kg / 13.66 N
Magnetic Induction
195.97 mT / 1960 Gs
Coating
[NiCuNi] Nickel
1.132 ZŁ with VAT / pcs + price for transport
0.920 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
if you prefer let us know via
our online form
the contact section.
Lifting power as well as appearance of magnetic components can be reviewed using our
power calculator.
Orders submitted before 14:00 will be dispatched today!
Detailed specification - MW 12x2 / N38 - cylindrical magnet
Specification / characteristics - MW 12x2 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010017 |
| GTIN/EAN | 5906301810162 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 12 mm [±0,1 mm] |
| Height | 2 mm [±0,1 mm] |
| Weight | 1.7 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 1.39 kg / 13.66 N |
| Magnetic Induction ~ ? | 195.97 mT / 1960 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the magnet - technical parameters
Presented data represent the result of a physical calculation. Values are based on models for the class Nd2Fe14B. Actual parameters may deviate from the simulation results. Please consider these calculations as a supplementary guide when designing systems.
Table 1: Static force (force vs gap) - power drop
MW 12x2 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
1959 Gs
195.9 mT
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
low risk |
| 1 mm |
1753 Gs
175.3 mT
|
1.11 kg / 2.45 lbs
1113.5 g / 10.9 N
|
low risk |
| 2 mm |
1479 Gs
147.9 mT
|
0.79 kg / 1.75 lbs
791.7 g / 7.8 N
|
low risk |
| 3 mm |
1196 Gs
119.6 mT
|
0.52 kg / 1.14 lbs
518.4 g / 5.1 N
|
low risk |
| 5 mm |
738 Gs
73.8 mT
|
0.20 kg / 0.44 lbs
197.4 g / 1.9 N
|
low risk |
| 10 mm |
229 Gs
22.9 mT
|
0.02 kg / 0.04 lbs
19.0 g / 0.2 N
|
low risk |
| 15 mm |
90 Gs
9.0 mT
|
0.00 kg / 0.01 lbs
2.9 g / 0.0 N
|
low risk |
| 20 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
low risk |
| 30 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
low risk |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
Table 2: Slippage hold (vertical surface)
MW 12x2 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.28 kg / 0.61 lbs
278.0 g / 2.7 N
|
| 1 mm | Stal (~0.2) |
0.22 kg / 0.49 lbs
222.0 g / 2.2 N
|
| 2 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
158.0 g / 1.5 N
|
| 3 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MW 12x2 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.42 kg / 0.92 lbs
417.0 g / 4.1 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.28 kg / 0.61 lbs
278.0 g / 2.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.14 kg / 0.31 lbs
139.0 g / 1.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.70 kg / 1.53 lbs
695.0 g / 6.8 N
|
Table 4: Material efficiency (substrate influence) - power losses
MW 12x2 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.14 kg / 0.31 lbs
139.0 g / 1.4 N
|
| 1 mm |
|
0.35 kg / 0.77 lbs
347.5 g / 3.4 N
|
| 2 mm |
|
0.70 kg / 1.53 lbs
695.0 g / 6.8 N
|
| 3 mm |
|
1.04 kg / 2.30 lbs
1042.5 g / 10.2 N
|
| 5 mm |
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
| 10 mm |
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
| 11 mm |
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
| 12 mm |
|
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
Table 5: Working in heat (material behavior) - resistance threshold
MW 12x2 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.39 kg / 3.06 lbs
1390.0 g / 13.6 N
|
OK |
| 40 °C | -2.2% |
1.36 kg / 3.00 lbs
1359.4 g / 13.3 N
|
OK |
| 60 °C | -4.4% |
1.33 kg / 2.93 lbs
1328.8 g / 13.0 N
|
|
| 80 °C | -6.6% |
1.30 kg / 2.86 lbs
1298.3 g / 12.7 N
|
|
| 100 °C | -28.8% |
0.99 kg / 2.18 lbs
989.7 g / 9.7 N
|
Table 6: Magnet-Magnet interaction (attraction) - field range
MW 12x2 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.68 kg / 5.90 lbs
3 435 Gs
|
0.40 kg / 0.88 lbs
401 g / 3.9 N
|
N/A |
| 1 mm |
2.44 kg / 5.37 lbs
3 739 Gs
|
0.37 kg / 0.81 lbs
366 g / 3.6 N
|
2.19 kg / 4.84 lbs
~0 Gs
|
| 2 mm |
2.14 kg / 4.73 lbs
3 507 Gs
|
0.32 kg / 0.71 lbs
322 g / 3.2 N
|
1.93 kg / 4.25 lbs
~0 Gs
|
| 3 mm |
1.83 kg / 4.04 lbs
3 241 Gs
|
0.27 kg / 0.61 lbs
275 g / 2.7 N
|
1.65 kg / 3.63 lbs
~0 Gs
|
| 5 mm |
1.24 kg / 2.74 lbs
2 671 Gs
|
0.19 kg / 0.41 lbs
187 g / 1.8 N
|
1.12 kg / 2.47 lbs
~0 Gs
|
| 10 mm |
0.38 kg / 0.84 lbs
1 476 Gs
|
0.06 kg / 0.13 lbs
57 g / 0.6 N
|
0.34 kg / 0.75 lbs
~0 Gs
|
| 20 mm |
0.04 kg / 0.08 lbs
458 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
28 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MW 12x2 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 4.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 3.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 3.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 2.5 cm |
| Car key | 50 Gs (5.0 mT) | 2.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Collisions (cracking risk) - collision effects
MW 12x2 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
29.08 km/h
(8.08 m/s)
|
0.06 J | |
| 30 mm |
49.95 km/h
(13.88 m/s)
|
0.16 J | |
| 50 mm |
64.48 km/h
(17.91 m/s)
|
0.27 J | |
| 100 mm |
91.19 km/h
(25.33 m/s)
|
0.55 J |
Table 9: Surface protection spec
MW 12x2 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 12x2 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 2 665 Mx | 26.7 µWb |
| Pc Coefficient | 0.25 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MW 12x2 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 1.39 kg | Standard |
| Water (riverbed) |
1.59 kg
(+0.20 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Caution: On a vertical surface, the magnet retains only approx. 20-30% of its nominal pull.
2. Steel saturation
*Thin metal sheet (e.g. 0.5mm PC case) severely reduces the holding force.
3. Temperature resistance
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.25
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other offers
Advantages and disadvantages of Nd2Fe14B magnets.
Benefits
- They retain attractive force for nearly 10 years – the drop is just ~1% (according to analyses),
- They are extremely resistant to demagnetization induced by external magnetic fields,
- A magnet with a metallic nickel surface is more attractive,
- Neodymium magnets achieve maximum magnetic induction on a contact point, which allows for strong attraction,
- Due to their durability and thermal resistance, neodymium magnets can operate (depending on the form) even at high temperatures reaching 230°C or more...
- Thanks to versatility in designing and the ability to adapt to client solutions,
- Fundamental importance in innovative solutions – they find application in magnetic memories, motor assemblies, medical devices, also multitasking production systems.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Limitations
- At strong impacts they can break, therefore we recommend placing them in special holders. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- When exposed to high temperature, neodymium magnets experience a drop in power. Often, when the temperature exceeds 80°C, their power decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic or other material stable to moisture, in case of application outdoors
- We suggest a housing - magnetic holder, due to difficulties in creating threads inside the magnet and complex forms.
- Possible danger to health – tiny shards of magnets are risky, when accidentally swallowed, which is particularly important in the context of child health protection. Additionally, small components of these magnets can be problematic in diagnostics medical in case of swallowing.
- High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which increases costs of application in large quantities
Holding force characteristics
Maximum holding power of the magnet – what affects it?
- on a plate made of structural steel, effectively closing the magnetic flux
- possessing a massiveness of minimum 10 mm to ensure full flux closure
- characterized by even structure
- with total lack of distance (without paint)
- during detachment in a direction vertical to the plane
- at ambient temperature approx. 20 degrees Celsius
What influences lifting capacity in practice
- Space between magnet and steel – even a fraction of a millimeter of distance (caused e.g. by veneer or unevenness) significantly weakens the magnet efficiency, often by half at just 0.5 mm.
- Loading method – catalog parameter refers to pulling vertically. When attempting to slide, the magnet holds significantly lower power (often approx. 20-30% of maximum force).
- Element thickness – to utilize 100% power, the steel must be adequately massive. Thin sheet restricts the attraction force (the magnet "punches through" it).
- Material composition – different alloys reacts the same. High carbon content worsen the interaction with the magnet.
- Surface condition – smooth surfaces ensure maximum contact, which increases force. Uneven metal weaken the grip.
- Heat – neodymium magnets have a negative temperature coefficient. At higher temperatures they are weaker, and at low temperatures they can be stronger (up to a certain limit).
Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the holding force is lower. Additionally, even a slight gap between the magnet and the plate decreases the holding force.
H&S for magnets
Beware of splinters
Watch out for shards. Magnets can explode upon uncontrolled impact, ejecting sharp fragments into the air. We recommend safety glasses.
Thermal limits
Standard neodymium magnets (N-type) undergo demagnetization when the temperature goes above 80°C. The loss of strength is permanent.
Machining danger
Powder generated during machining of magnets is combustible. Do not drill into magnets without proper cooling and knowledge.
Compass and GPS
Navigation devices and smartphones are extremely sensitive to magnetic fields. Direct contact with a strong magnet can permanently damage the internal compass in your phone.
Crushing risk
Large magnets can break fingers in a fraction of a second. Never put your hand betwixt two strong magnets.
Conscious usage
Use magnets consciously. Their powerful strength can surprise even professionals. Be vigilant and do not underestimate their force.
Medical implants
For implant holders: Strong magnetic fields affect electronics. Maintain minimum 30 cm distance or request help to handle the magnets.
Swallowing risk
Neodymium magnets are not toys. Accidental ingestion of several magnets may result in them pinching intestinal walls, which poses a direct threat to life and necessitates immediate surgery.
Nickel allergy
Medical facts indicate that nickel (standard magnet coating) is a common allergen. For allergy sufferers, prevent direct skin contact and choose encased magnets.
Magnetic media
Do not bring magnets near a purse, laptop, or screen. The magnetic field can destroy these devices and erase data from cards.
