tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. All magnesy neodymowe in our store are available for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for water searching F200 GOLD

Where to purchase powerful magnet? Holders with magnets in airtight, solid steel casing are excellent for use in variable and difficult climate conditions, including snow and rain more information...

magnetic holders

Holders with magnets can be used to enhance production processes, underwater exploration, or locating meteorites made of metal check...

Order is shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 12x2 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010017

GTIN: 5906301810162

5

Diameter Ø [±0,1 mm]

12 mm

Height [±0,1 mm]

2 mm

Weight

1.7 g

Magnetization Direction

↑ axial

Load capacity

1.33 kg / 13.04 N

Magnetic Induction

195.97 mT

Coating

[NiCuNi] nickel

0.74 with VAT / pcs + price for transport

0.60 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.60 ZŁ
0.74 ZŁ
price from 1000 pcs
0.56 ZŁ
0.69 ZŁ
price from 4167 pcs
0.53 ZŁ
0.65 ZŁ

Need advice?

Call us +48 22 499 98 98 if you prefer get in touch via request form the contact page.
Parameters along with shape of a neodymium magnet can be analyzed using our force calculator.

Same-day processing for orders placed before 14:00.

MW 12x2 / N38 - cylindrical magnet

Specification/characteristics MW 12x2 / N38 - cylindrical magnet
properties
values
Cat. no.
010017
GTIN
5906301810162
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
12 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
1.7 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.33 kg / 13.04 N
Magnetic Induction ~ ?
195.97 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 12x2 / N38 are magnets made of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which exceed traditional iron magnets. Thanks to their power, they are frequently employed in products that require strong adhesion. The typical temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their resistance to corrosion. The shape of a cylinder is also very popular among neodymium magnets. The magnet with the designation MW 12x2 / N38 with a magnetic lifting capacity of 1.33 kg has a weight of only 1.7 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. Their production process requires a specialized approach and includes sintering special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of epoxy to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the site for the latest information and offers, and before visiting, please call.
Due to their strength, cylindrical neodymium magnets are practical in many applications, they can also pose certain risk. Due to their strong magnetic power, they can pull metallic objects with great force, which can lead to damaging skin or other materials, especially hands. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strong magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with other metals and then forming and heat treating. Their powerful magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as gold, to shield them from environmental factors and prolong their durability. High temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
A neodymium magnet N52 and N50 is a strong and extremely powerful magnetic product in the form of a cylinder, featuring high force and broad usability. Competitive price, availability, resistance and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their exceptional strength, neodymium magnets offer the following advantages:

  • Their strength remains stable, and after around ten years, it drops only by ~1% (theoretically),
  • They are extremely resistant to demagnetization caused by external magnetic sources,
  • In other words, due to the metallic gold coating, the magnet obtains an professional appearance,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which expands their functional possibilities,
  • Wide application in modern technologies – they are used in HDDs, rotating machines, healthcare devices along with high-tech tools,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time strengthens its overall robustness,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of rubber for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
  • Potential hazard due to small fragments may arise, especially if swallowed, which is notable in the health of young users. It should also be noted that minuscule fragments from these assemblies may interfere with diagnostics after being swallowed,
  • In cases of mass production, neodymium magnet cost may be a barrier,

Handle Neodymium Magnets Carefully

Neodymium magnetic are known for being fragile, which can cause them to become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Magnets, depending on their size, can even cut off a finger or alternatively there can be a serious pressure or even a fracture.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

  Do not give neodymium magnets to youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Keep neodymium magnets away from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Safety precautions!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98