e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our store's offer. All "neodymium magnets" in our store are in stock for immediate purchase (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for water searching F200 GOLD

Where to purchase powerful magnet? Magnet holders in airtight, solid steel enclosure are perfect for use in variable and difficult climate conditions, including during rain and snow see more...

magnets with holders

Magnetic holders can be used to improve production processes, underwater discoveries, or finding space rocks made of ore more information...

We promise to ship ordered magnets if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 12x8/4x3 / N38 - ring magnet

ring magnet

Catalog no 030395

GTIN: 5906301812326

5

Diameter [±0,1 mm]

12 mm

internal diameter Ø [±0,1 mm]

8/4 mm

Height [±0,1 mm]

3 mm

Weight

4.24 g

Magnetization Direction

↑ axial

Load capacity

0.68 kg / 6.67 N

Magnetic Induction

237.19 mT

Coating

[NiCuNi] nickel

1.43 with VAT / pcs + price for transport

1.16 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.16 ZŁ
1.43 ZŁ
price from 518 pcs
1.16 ZŁ
1.43 ZŁ
price from 2156 pcs
1.16 ZŁ
1.43 ZŁ

Want to negotiate?

Call us now +48 888 99 98 98 if you prefer let us know via contact form our website.
Parameters as well as shape of a neodymium magnet can be verified on our power calculator.

Orders submitted before 14:00 will be dispatched today!

MP 12x8/4x3 / N38 - ring magnet

Specification/characteristics MP 12x8/4x3 / N38 - ring magnet
properties
values
Cat. no.
030395
GTIN
5906301812326
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
12 mm [±0,1 mm]
internal diameter Ø
8/4 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
4.24 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.68 kg / 6.67 N
Magnetic Induction ~ ?
237.19 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium magnets MP 12x8/4x3 / N38 in a ring form are commonly used in various industries due to their specific properties. Thanks to a powerful magnetic field of 0.68 kg, which can be described as strength, they are very helpful in applications that require high magnetic power in a relatively small area. Applications of MP 12x8/4x3 / N38 magnets include electric motors, generating systems, sound devices, and many other devices that use magnets for generating motion or storing energy. Despite their significant strength, they have a comparatively low weight of 4.24 grams, which makes them more convenient to use compared to bulkier alternatives.
Ring magnets work due to their atomic structure. In the production process, neodymium atoms are arranged appropriately, which allows for the creation of a concentrated magnetic field in a specific direction. This makes them perfect for devices such as stepper motors or industrial robots. Additionally, ring magnets are resistant to demagnetization.
Ring magnets have a wide range of applications in many industries, such as production of electronic devices, such as speakers and electric motors, the automotive industry, e.g., in the construction of electric motors, and medical equipment, e.g., in scanning devices. Their ability to work in high temperatures and precise magnetic field control makes them indispensable in challenging industrial conditions.
Their uniqueness comes from high magnetic strength, resistance to high temperatures, and precision in generating the magnetic field. Thanks to their ring shape allows for application in devices requiring concentrated magnetic fields. Moreover, these magnets are more durable than traditional ferrite magnets, which has made them popular in advanced technologies and industrial applications.
Ring magnets perform excellently across a wide range of temperatures. They do not lose their magnetic properties, until the Curie temperature is exceeded, which for neodymium magnets is around 80°C. They are more resistant to loss of magnetism than traditional ferrite magnets. For this reason, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.
A neodymium magnet of class N52 and N50 is a strong and powerful magnetic product shaped like a ring, that provides high force and universal application. Competitive price, availability, durability and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their strong magnetism, neodymium magnets have these key benefits:

  • They do not lose their strength around 10 years – the reduction of strength is only ~1% (according to tests),
  • They are very resistant to demagnetization caused by external magnetic sources,
  • Thanks to the shiny finish and gold coating, they have an visually attractive appearance,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which expands their functional possibilities,
  • Significant impact in modern technologies – they are utilized in data storage devices, rotating machines, clinical machines along with other advanced devices,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time increases its overall resistance,
  • They lose strength at extreme temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of plastic for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is restricted,
  • Potential hazard due to small fragments may arise, when consumed by mistake, which is important in the protection of children. Additionally, small elements from these assemblies can disrupt scanning after being swallowed,
  • In cases of mass production, neodymium magnet cost may be a barrier,

Best holding force of the magnet in ideal parameterswhat it depends on?

The given holding capacity of the magnet corresponds to the highest holding force, calculated under optimal conditions, namely:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet depends on in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of suitable thickness, under a perpendicular pulling force, whereas under parallel forces the holding force is lower. In addition, even a small distance {between} the magnet and the plate decreases the holding force.

Exercise Caution with Neodymium Magnets

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets may crack or crumble with uncontrolled joining to each other. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

 Maintain neodymium magnets far from children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are especially delicate, which leads to damage.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Exercise caution!

To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98