MP 12x8/4x3 / N38 - ring magnet
ring magnet
Catalog no 030395
GTIN/EAN: 5906301812326
Diameter
12 mm [±0,1 mm]
internal diameter Ø
8/4 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
2.26 g
Magnetization Direction
↑ axial
Load capacity
2.21 kg / 21.72 N
Magnetic Induction
277.09 mT / 2771 Gs
Coating
[NiCuNi] Nickel
1.427 ZŁ with VAT / pcs + price for transport
1.160 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 22 499 98 98
alternatively contact us through
contact form
through our site.
Parameters along with form of a magnet can be tested with our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
Technical specification of the product - MP 12x8/4x3 / N38 - ring magnet
Specification / characteristics - MP 12x8/4x3 / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030395 |
| GTIN/EAN | 5906301812326 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 12 mm [±0,1 mm] |
| internal diameter Ø | 8/4 mm [±0,1 mm] |
| Height | 3 mm [±0,1 mm] |
| Weight | 2.26 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 2.21 kg / 21.72 N |
| Magnetic Induction ~ ? | 277.09 mT / 2771 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical analysis of the magnet - technical parameters
The following data constitute the result of a engineering simulation. Results rely on algorithms for the class Nd2Fe14B. Operational conditions might slightly deviate from the simulation results. Please consider these data as a supplementary guide for designers.
Table 1: Static force (pull vs distance) - characteristics
MP 12x8/4x3 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg) | Risk Status |
|---|---|---|---|
| 0 mm |
2423 Gs
242.3 mT
|
2.21 kg / 2210.0 g
21.7 N
|
strong |
| 1 mm |
2138 Gs
213.8 mT
|
1.72 kg / 1720.7 g
16.9 N
|
weak grip |
| 2 mm |
1786 Gs
178.6 mT
|
1.20 kg / 1200.5 g
11.8 N
|
weak grip |
| 3 mm |
1437 Gs
143.7 mT
|
0.78 kg / 777.8 g
7.6 N
|
weak grip |
| 5 mm |
885 Gs
88.5 mT
|
0.29 kg / 294.7 g
2.9 N
|
weak grip |
| 10 mm |
277 Gs
27.7 mT
|
0.03 kg / 28.9 g
0.3 N
|
weak grip |
| 15 mm |
110 Gs
11.0 mT
|
0.00 kg / 4.6 g
0.0 N
|
weak grip |
| 20 mm |
53 Gs
5.3 mT
|
0.00 kg / 1.1 g
0.0 N
|
weak grip |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.1 g
0.0 N
|
weak grip |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
weak grip |
Table 2: Slippage capacity (wall)
MP 12x8/4x3 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.44 kg / 442.0 g
4.3 N
|
| 1 mm | Stal (~0.2) |
0.34 kg / 344.0 g
3.4 N
|
| 2 mm | Stal (~0.2) |
0.24 kg / 240.0 g
2.4 N
|
| 3 mm | Stal (~0.2) |
0.16 kg / 156.0 g
1.5 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 58.0 g
0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MP 12x8/4x3 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.66 kg / 663.0 g
6.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.44 kg / 442.0 g
4.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.22 kg / 221.0 g
2.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.11 kg / 1105.0 g
10.8 N
|
Table 4: Steel thickness (substrate influence) - sheet metal selection
MP 12x8/4x3 / N38
| Steel thickness (mm) | % power | Real pull force (kg) |
|---|---|---|
| 0.5 mm |
|
0.22 kg / 221.0 g
2.2 N
|
| 1 mm |
|
0.55 kg / 552.5 g
5.4 N
|
| 2 mm |
|
1.11 kg / 1105.0 g
10.8 N
|
| 5 mm |
|
2.21 kg / 2210.0 g
21.7 N
|
| 10 mm |
|
2.21 kg / 2210.0 g
21.7 N
|
Table 5: Thermal stability (stability) - resistance threshold
MP 12x8/4x3 / N38
| Ambient temp. (°C) | Power loss | Remaining pull | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.21 kg / 2210.0 g
21.7 N
|
OK |
| 40 °C | -2.2% |
2.16 kg / 2161.4 g
21.2 N
|
OK |
| 60 °C | -4.4% |
2.11 kg / 2112.8 g
20.7 N
|
|
| 80 °C | -6.6% |
2.06 kg / 2064.1 g
20.2 N
|
|
| 100 °C | -28.8% |
1.57 kg / 1573.5 g
15.4 N
|
Table 6: Two magnets (repulsion) - field collision
MP 12x8/4x3 / N38
| Gap (mm) | Attraction (kg) (N-S) | Repulsion (kg) (N-N) |
|---|---|---|
| 0 mm |
3.09 kg / 3092 g
30.3 N
4 010 Gs
|
N/A |
| 1 mm |
2.77 kg / 2774 g
27.2 N
4 589 Gs
|
2.50 kg / 2496 g
24.5 N
~0 Gs
|
| 2 mm |
2.41 kg / 2408 g
23.6 N
4 276 Gs
|
2.17 kg / 2167 g
21.3 N
~0 Gs
|
| 3 mm |
2.03 kg / 2034 g
20.0 N
3 930 Gs
|
1.83 kg / 1831 g
18.0 N
~0 Gs
|
| 5 mm |
1.36 kg / 1362 g
13.4 N
3 216 Gs
|
1.23 kg / 1226 g
12.0 N
~0 Gs
|
| 10 mm |
0.41 kg / 412 g
4.0 N
1 770 Gs
|
0.37 kg / 371 g
3.6 N
~0 Gs
|
| 20 mm |
0.04 kg / 40 g
0.4 N
554 Gs
|
0.04 kg / 36 g
0.4 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
58 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Table 7: Hazards (electronics) - precautionary measures
MP 12x8/4x3 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 3.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 2.5 cm |
| Remote | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (kinetic energy) - collision effects
MP 12x8/4x3 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
31.79 km/h
(8.83 m/s)
|
0.09 J | |
| 30 mm |
54.63 km/h
(15.17 m/s)
|
0.26 J | |
| 50 mm |
70.52 km/h
(19.59 m/s)
|
0.43 J | |
| 100 mm |
99.73 km/h
(27.70 m/s)
|
0.87 J |
Table 9: Corrosion resistance
MP 12x8/4x3 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MP 12x8/4x3 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 2 466 Mx | 24.7 µWb |
| Pc Coefficient | 0.32 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MP 12x8/4x3 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 2.21 kg | Standard |
| Water (riverbed) |
2.53 kg
(+0.32 kg Buoyancy gain)
|
+14.5% |
1. Vertical hold
*Warning: On a vertical wall, the magnet retains merely approx. 20-30% of its nominal pull.
2. Steel saturation
*Thin metal sheet (e.g. 0.5mm PC case) significantly limits the holding force.
3. Power loss vs temp
*For N38 grade, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.32
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View also proposals
Advantages as well as disadvantages of neodymium magnets.
Pros
- They virtually do not lose power, because even after ten years the decline in efficiency is only ~1% (in laboratory conditions),
- They feature excellent resistance to magnetism drop when exposed to external magnetic sources,
- In other words, due to the glossy layer of nickel, the element becomes visually attractive,
- Magnetic induction on the working layer of the magnet turns out to be strong,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the form) even at high temperatures reaching 230°C or more...
- Possibility of detailed modeling as well as adjusting to individual conditions,
- Huge importance in electronics industry – they find application in hard drives, electric drive systems, medical equipment, as well as industrial machines.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in compact dimensions, which enables their usage in miniature devices
Disadvantages
- Susceptibility to cracking is one of their disadvantages. Upon intense impact they can fracture. We advise keeping them in a special holder, which not only secures them against impacts but also increases their durability
- We warn that neodymium magnets can lose their power at high temperatures. To prevent this, we advise our specialized [AH] magnets, which work effectively even at 230°C.
- They oxidize in a humid environment - during use outdoors we advise using waterproof magnets e.g. in rubber, plastic
- Limited possibility of making nuts in the magnet and complicated shapes - recommended is a housing - mounting mechanism.
- Health risk related to microscopic parts of magnets can be dangerous, when accidentally swallowed, which gains importance in the aspect of protecting the youngest. Additionally, small components of these magnets are able to disrupt the diagnostic process medical when they are in the body.
- High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which can limit application in large quantities
Pull force analysis
Maximum lifting force for a neodymium magnet – what it depends on?
- on a base made of mild steel, effectively closing the magnetic flux
- whose thickness reaches at least 10 mm
- characterized by smoothness
- under conditions of ideal adhesion (surface-to-surface)
- during pulling in a direction perpendicular to the mounting surface
- in neutral thermal conditions
Determinants of lifting force in real conditions
- Gap between magnet and steel – even a fraction of a millimeter of distance (caused e.g. by varnish or unevenness) diminishes the pulling force, often by half at just 0.5 mm.
- Load vector – highest force is reached only during pulling at a 90° angle. The resistance to sliding of the magnet along the surface is standardly many times smaller (approx. 1/5 of the lifting capacity).
- Substrate thickness – to utilize 100% power, the steel must be adequately massive. Thin sheet restricts the lifting capacity (the magnet "punches through" it).
- Material type – ideal substrate is high-permeability steel. Hardened steels may have worse magnetic properties.
- Surface quality – the more even the surface, the better the adhesion and higher the lifting capacity. Unevenness creates an air distance.
- Thermal factor – hot environment reduces magnetic field. Too high temperature can permanently damage the magnet.
Holding force was measured on the plate surface of 20 mm thickness, when a perpendicular force was applied, however under shearing force the lifting capacity is smaller. In addition, even a slight gap between the magnet and the plate decreases the load capacity.
Warnings
Electronic hazard
Device Safety: Neodymium magnets can ruin payment cards and delicate electronics (heart implants, medical aids, timepieces).
Magnet fragility
Watch out for shards. Magnets can fracture upon uncontrolled impact, launching sharp fragments into the air. Wear goggles.
Danger to the youngest
Strictly store magnets away from children. Choking hazard is high, and the consequences of magnets connecting inside the body are tragic.
Do not overheat magnets
Avoid heat. Neodymium magnets are susceptible to heat. If you require operation above 80°C, look for HT versions (H, SH, UH).
GPS and phone interference
Navigation devices and smartphones are highly sensitive to magnetic fields. Close proximity with a powerful NdFeB magnet can ruin the internal compass in your phone.
Finger safety
Large magnets can break fingers in a fraction of a second. Do not place your hand between two strong magnets.
Safe operation
Use magnets consciously. Their immense force can shock even experienced users. Be vigilant and do not underestimate their power.
Implant safety
Warning for patients: Powerful magnets affect electronics. Keep at least 30 cm distance or request help to work with the magnets.
Fire risk
Mechanical processing of neodymium magnets carries a risk of fire risk. Magnetic powder oxidizes rapidly with oxygen and is difficult to extinguish.
Allergy Warning
Warning for allergy sufferers: The Ni-Cu-Ni coating consists of nickel. If redness occurs, immediately stop handling magnets and use protective gear.
