tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. Practically all "magnets" in our store are available for immediate delivery (check the list). See the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy very strong magnet? Magnet holders in airtight and durable steel enclosure are perfect for use in variable and difficult weather conditions, including snow and rain see more...

magnets with holders

Holders with magnets can be used to enhance production processes, underwater exploration, or searching for meteorites from gold see...

Shipping always shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 12x8/4x3 / N38 - ring magnet

ring magnet

Catalog no 030395

GTIN: 5906301812326

5

Diameter [±0,1 mm]

12 mm

internal diameter Ø [±0,1 mm]

8/4 mm

Height [±0,1 mm]

3 mm

Weight

4.24 g

Magnetization Direction

↑ axial

Load capacity

0.68 kg / 6.67 N

Magnetic Induction

237.19 mT

Coating

[NiCuNi] nickel

1.43 with VAT / pcs + price for transport

1.16 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.16 ZŁ
1.43 ZŁ
price from 550 pcs
1.09 ZŁ
1.34 ZŁ
price from 2200 pcs
1.02 ZŁ
1.25 ZŁ

Hunting for a discount?

Pick up the phone and ask +48 22 499 98 98 or contact us by means of inquiry form the contact page.
Weight along with shape of magnetic components can be analyzed using our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

MP 12x8/4x3 / N38 - ring magnet

Specification/characteristics MP 12x8/4x3 / N38 - ring magnet
properties
values
Cat. no.
030395
GTIN
5906301812326
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
12 mm [±0,1 mm]
internal diameter Ø
8/4 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
4.24 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.68 kg / 6.67 N
Magnetic Induction ~ ?
237.19 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Due to specific properties, neodymium magnet MP 12x8/4x3 / N38 in a ring form finds extensive use in various industries. Thanks to a powerful magnetic field of 0.68 kg, which can be described as force, they are extremely useful in applications that require high magnetic power in a compact space. Applications of MP 12x8/4x3 / N38 magnets include electrical mechanisms, generating systems, sound devices, and several other devices that use magnets for producing motion or energy storage. Despite their powerful strength, they have a relatively low weight of 4.24 grams, which makes them more convenient to use compared to heavier alternatives.
Ring magnets work due to their atomic structure. Their properties arise from a controlled production process, including sintering and magnetization, which allows for the creation of a concentrated magnetic field in a specific direction. This makes them perfect for devices such as stepper motors or industrial robots. Moreover, ring magnets are resistant to demagnetization.
They are used in various fields of technology and industry, such as production of electronic devices, such as speakers and electric motors, the automotive industry, e.g., in the construction of electric motors, and medical equipment, e.g., in scanning devices. Their ability to work in high temperatures and precise magnetic field control makes them ideal for technologically advanced applications.
Ring magnets stand out extraordinary pulling power, resistance to high temperatures, and precision in generating the magnetic field. Their unique ring form allows for application in devices requiring concentrated magnetic fields. Additionally, these magnets are more durable than traditional ferrite magnets, making them an ideal choice in the automotive, electronics, and medical industries.
Thanks to their resistance to high temperatures, ring magnets operate reliably even in tough conditions. Their magnetic properties remain stable, until the Curie temperature is exceeded, which for neodymium magnets is around 80°C. They are more resistant to loss of magnetism than traditional ferrite magnets. Because of this, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.
A neodymium magnet of class N50 and N52 is a powerful and strong metal object with the shape of a ring, that offers strong holding power and versatile application. Very good price, availability, resistance and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They do not lose their power approximately ten years – the reduction of power is only ~1% (based on measurements),
  • They are extremely resistant to demagnetization caused by external magnetic sources,
  • The use of a decorative silver surface provides a refined finish,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • The ability for custom shaping as well as customization to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
  • Significant impact in modern technologies – they are used in data storage devices, electric drives, diagnostic apparatus as well as high-tech tools,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time reinforces its overall resistance,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of synthetic coating for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is restricted,
  • Possible threat due to small fragments may arise, when consumed by mistake, which is notable in the family environments. Moreover, miniature parts from these devices have the potential to disrupt scanning after being swallowed,
  • Due to the price of neodymium, their cost is above average,

Maximum lifting capacity of the magnetwhat it depends on?

The given lifting capacity of the magnet means the maximum lifting force, calculated in ideal conditions, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with zero air gap
  • with vertical force applied
  • in normal thermal conditions

Determinants of lifting force in real conditions

The lifting capacity of a magnet depends on in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under shearing force the load capacity is reduced by as much as fivefold. Additionally, even a small distance {between} the magnet and the plate lowers the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets are highly delicate, they easily fall apart and can crumble.

Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to place fingers between magnets or in their path when attract. Magnets, depending on their size, can even cut off a finger or there can be a serious pressure or even a fracture.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

 Maintain neodymium magnets far from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Exercise caution!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98