MP 12x8/4x3 / N38 - ring magnet
ring magnet
Catalog no 030395
GTIN/EAN: 5906301812326
Diameter
12 mm [±0,1 mm]
internal diameter Ø
8/4 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
2.26 g
Magnetization Direction
↑ axial
Load capacity
2.21 kg / 21.72 N
Magnetic Induction
277.09 mT / 2771 Gs
Coating
[NiCuNi] Nickel
1.427 ZŁ with VAT / pcs + price for transport
1.160 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 22 499 98 98
if you prefer contact us via
inquiry form
our website.
Lifting power as well as structure of a neodymium magnet can be calculated with our
force calculator.
Orders placed before 14:00 will be shipped the same business day.
Physical properties - MP 12x8/4x3 / N38 - ring magnet
Specification / characteristics - MP 12x8/4x3 / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030395 |
| GTIN/EAN | 5906301812326 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 12 mm [±0,1 mm] |
| internal diameter Ø | 8/4 mm [±0,1 mm] |
| Height | 3 mm [±0,1 mm] |
| Weight | 2.26 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 2.21 kg / 21.72 N |
| Magnetic Induction ~ ? | 277.09 mT / 2771 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering modeling of the magnet - technical parameters
Presented values represent the direct effect of a engineering analysis. Results were calculated on algorithms for the class Nd2Fe14B. Real-world conditions may deviate from the simulation results. Treat these data as a preliminary roadmap for designers.
Table 1: Static force (pull vs gap) - characteristics
MP 12x8/4x3 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2423 Gs
242.3 mT
|
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
strong |
| 1 mm |
2138 Gs
213.8 mT
|
1.72 kg / 3.79 lbs
1720.7 g / 16.9 N
|
safe |
| 2 mm |
1786 Gs
178.6 mT
|
1.20 kg / 2.65 lbs
1200.5 g / 11.8 N
|
safe |
| 3 mm |
1437 Gs
143.7 mT
|
0.78 kg / 1.71 lbs
777.8 g / 7.6 N
|
safe |
| 5 mm |
885 Gs
88.5 mT
|
0.29 kg / 0.65 lbs
294.7 g / 2.9 N
|
safe |
| 10 mm |
277 Gs
27.7 mT
|
0.03 kg / 0.06 lbs
28.9 g / 0.3 N
|
safe |
| 15 mm |
110 Gs
11.0 mT
|
0.00 kg / 0.01 lbs
4.6 g / 0.0 N
|
safe |
| 20 mm |
53 Gs
5.3 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
safe |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
safe |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Slippage load (wall)
MP 12x8/4x3 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.44 kg / 0.97 lbs
442.0 g / 4.3 N
|
| 1 mm | Stal (~0.2) |
0.34 kg / 0.76 lbs
344.0 g / 3.4 N
|
| 2 mm | Stal (~0.2) |
0.24 kg / 0.53 lbs
240.0 g / 2.4 N
|
| 3 mm | Stal (~0.2) |
0.16 kg / 0.34 lbs
156.0 g / 1.5 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MP 12x8/4x3 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.66 kg / 1.46 lbs
663.0 g / 6.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.44 kg / 0.97 lbs
442.0 g / 4.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.22 kg / 0.49 lbs
221.0 g / 2.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.11 kg / 2.44 lbs
1105.0 g / 10.8 N
|
Table 4: Material efficiency (substrate influence) - power losses
MP 12x8/4x3 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.22 kg / 0.49 lbs
221.0 g / 2.2 N
|
| 1 mm |
|
0.55 kg / 1.22 lbs
552.5 g / 5.4 N
|
| 2 mm |
|
1.11 kg / 2.44 lbs
1105.0 g / 10.8 N
|
| 3 mm |
|
1.66 kg / 3.65 lbs
1657.5 g / 16.3 N
|
| 5 mm |
|
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
| 10 mm |
|
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
| 11 mm |
|
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
| 12 mm |
|
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
Table 5: Working in heat (stability) - power drop
MP 12x8/4x3 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
OK |
| 40 °C | -2.2% |
2.16 kg / 4.77 lbs
2161.4 g / 21.2 N
|
OK |
| 60 °C | -4.4% |
2.11 kg / 4.66 lbs
2112.8 g / 20.7 N
|
|
| 80 °C | -6.6% |
2.06 kg / 4.55 lbs
2064.1 g / 20.2 N
|
|
| 100 °C | -28.8% |
1.57 kg / 3.47 lbs
1573.5 g / 15.4 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field collision
MP 12x8/4x3 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.09 kg / 6.82 lbs
4 010 Gs
|
0.46 kg / 1.02 lbs
464 g / 4.6 N
|
N/A |
| 1 mm |
2.77 kg / 6.12 lbs
4 589 Gs
|
0.42 kg / 0.92 lbs
416 g / 4.1 N
|
2.50 kg / 5.50 lbs
~0 Gs
|
| 2 mm |
2.41 kg / 5.31 lbs
4 276 Gs
|
0.36 kg / 0.80 lbs
361 g / 3.5 N
|
2.17 kg / 4.78 lbs
~0 Gs
|
| 3 mm |
2.03 kg / 4.48 lbs
3 930 Gs
|
0.31 kg / 0.67 lbs
305 g / 3.0 N
|
1.83 kg / 4.04 lbs
~0 Gs
|
| 5 mm |
1.36 kg / 3.00 lbs
3 216 Gs
|
0.20 kg / 0.45 lbs
204 g / 2.0 N
|
1.23 kg / 2.70 lbs
~0 Gs
|
| 10 mm |
0.41 kg / 0.91 lbs
1 770 Gs
|
0.06 kg / 0.14 lbs
62 g / 0.6 N
|
0.37 kg / 0.82 lbs
~0 Gs
|
| 20 mm |
0.04 kg / 0.09 lbs
554 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
58 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - warnings
MP 12x8/4x3 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 3.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 2.5 cm |
| Car key | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Collisions (cracking risk) - collision effects
MP 12x8/4x3 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
31.79 km/h
(8.83 m/s)
|
0.09 J | |
| 30 mm |
54.63 km/h
(15.17 m/s)
|
0.26 J | |
| 50 mm |
70.52 km/h
(19.59 m/s)
|
0.43 J | |
| 100 mm |
99.73 km/h
(27.70 m/s)
|
0.87 J |
Table 9: Surface protection spec
MP 12x8/4x3 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MP 12x8/4x3 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 2 466 Mx | 24.7 µWb |
| Pc Coefficient | 0.32 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MP 12x8/4x3 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 2.21 kg | Standard |
| Water (riverbed) |
2.53 kg
(+0.32 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Warning: On a vertical surface, the magnet retains merely ~20% of its perpendicular strength.
2. Plate thickness effect
*Thin metal sheet (e.g. computer case) significantly reduces the holding force.
3. Power loss vs temp
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.32
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out more offers
Strengths and weaknesses of neodymium magnets.
Pros
- They virtually do not lose strength, because even after ten years the performance loss is only ~1% (based on calculations),
- Magnets perfectly protect themselves against loss of magnetization caused by ambient magnetic noise,
- The use of an aesthetic finish of noble metals (nickel, gold, silver) causes the element to be more visually attractive,
- Neodymium magnets deliver maximum magnetic induction on a contact point, which increases force concentration,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
- Thanks to flexibility in shaping and the ability to adapt to unusual requirements,
- Wide application in advanced technology sectors – they find application in mass storage devices, electric motors, advanced medical instruments, and technologically advanced constructions.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in small dimensions, which makes them useful in compact constructions
Weaknesses
- They are prone to damage upon heavy impacts. To avoid cracks, it is worth securing magnets using a steel holder. Such protection not only shields the magnet but also improves its resistance to damage
- When exposed to high temperature, neodymium magnets suffer a drop in power. Often, when the temperature exceeds 80°C, their power decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- They rust in a humid environment - during use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- We suggest casing - magnetic mount, due to difficulties in creating nuts inside the magnet and complex forms.
- Health risk related to microscopic parts of magnets can be dangerous, in case of ingestion, which gains importance in the aspect of protecting the youngest. It is also worth noting that small elements of these products are able to complicate diagnosis medical after entering the body.
- Due to neodymium price, their price exceeds standard values,
Pull force analysis
Maximum lifting capacity of the magnet – what contributes to it?
- on a plate made of structural steel, optimally conducting the magnetic field
- possessing a thickness of minimum 10 mm to ensure full flux closure
- with a plane perfectly flat
- under conditions of no distance (metal-to-metal)
- during detachment in a direction perpendicular to the plane
- in stable room temperature
Lifting capacity in practice – influencing factors
- Distance (betwixt the magnet and the metal), since even a tiny clearance (e.g. 0.5 mm) leads to a drastic drop in force by up to 50% (this also applies to varnish, corrosion or debris).
- Force direction – declared lifting capacity refers to detachment vertically. When slipping, the magnet holds much less (typically approx. 20-30% of nominal force).
- Plate thickness – insufficiently thick steel causes magnetic saturation, causing part of the power to be lost into the air.
- Steel grade – ideal substrate is high-permeability steel. Cast iron may have worse magnetic properties.
- Surface finish – full contact is obtained only on smooth steel. Any scratches and bumps reduce the real contact area, weakening the magnet.
- Thermal conditions – neodymium magnets have a negative temperature coefficient. At higher temperatures they are weaker, and in frost they can be stronger (up to a certain limit).
Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under parallel forces the load capacity is reduced by as much as 75%. In addition, even a small distance between the magnet’s surface and the plate decreases the holding force.
Warnings
Material brittleness
Despite metallic appearance, neodymium is delicate and cannot withstand shocks. Do not hit, as the magnet may crumble into hazardous fragments.
Fire risk
Mechanical processing of NdFeB material poses a fire hazard. Neodymium dust oxidizes rapidly with oxygen and is hard to extinguish.
Immense force
Exercise caution. Neodymium magnets act from a distance and connect with huge force, often faster than you can move away.
Keep away from children
NdFeB magnets are not intended for children. Swallowing multiple magnets can lead to them pinching intestinal walls, which poses a direct threat to life and necessitates immediate surgery.
Life threat
For implant holders: Powerful magnets disrupt electronics. Maintain minimum 30 cm distance or request help to handle the magnets.
Hand protection
Risk of injury: The attraction force is so great that it can cause blood blisters, crushing, and even bone fractures. Use thick gloves.
Magnetic interference
A powerful magnetic field negatively affects the operation of compasses in smartphones and navigation systems. Do not bring magnets close to a smartphone to avoid breaking the sensors.
Data carriers
Intense magnetic fields can erase data on credit cards, hard drives, and storage devices. Keep a distance of min. 10 cm.
Nickel allergy
Certain individuals have a sensitization to nickel, which is the typical protective layer for NdFeB magnets. Frequent touching can result in dermatitis. We strongly advise wear safety gloves.
Permanent damage
Do not overheat. Neodymium magnets are sensitive to temperature. If you need resistance above 80°C, look for special high-temperature series (H, SH, UH).
