MP 12x8/4x3 / N38 - ring magnet
ring magnet
Catalog no 030395
GTIN: 5906301812326
Diameter [±0,1 mm]
12 mm
internal diameter Ø [±0,1 mm]
8/4 mm
Height [±0,1 mm]
3 mm
Weight
4.24 g
Magnetization Direction
↑ axial
Load capacity
0.68 kg / 6.67 N
Magnetic Induction
237.19 mT
Coating
[NiCuNi] nickel
1.427 ZŁ with VAT / pcs + price for transport
1.160 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have trouble choosing?
Call us now
+48 22 499 98 98
alternatively drop us a message by means of
inquiry form
the contact section.
Force as well as structure of magnets can be verified with our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
MP 12x8/4x3 / N38 - ring magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- They retain their attractive force for around ten years – the drop is just ~1% (according to analyses),
- They remain magnetized despite exposure to strong external fields,
- Thanks to the polished finish and silver coating, they have an visually attractive appearance,
- They have very high magnetic induction on the surface of the magnet,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
- Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which broadens their functional possibilities,
- Significant impact in advanced technical fields – they find application in HDDs, rotating machines, healthcare devices and high-tech tools,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of magnetic elements:
- They may fracture when subjected to a sudden impact. If the magnets are exposed to external force, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage and additionally enhances its overall strength,
- They lose magnetic force at extreme temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a moist environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing holes directly in the magnet,
- Safety concern linked to microscopic shards may arise, in case of ingestion, which is notable in the context of child safety. It should also be noted that miniature parts from these assemblies might complicate medical imaging if inside the body,
- Due to the price of neodymium, their cost is considerably higher,
Breakaway strength of the magnet in ideal conditions – what contributes to it?
The given lifting capacity of the magnet represents the maximum lifting force, measured in ideal conditions, specifically:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a polished side
- with zero air gap
- under perpendicular detachment force
- under standard ambient temperature
Determinants of practical lifting force of a magnet
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under shearing force the holding force is lower. Additionally, even a small distance {between} the magnet and the plate reduces the load capacity.
Exercise Caution with Neodymium Magnets
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Neodymium magnets jump and also clash mutually within a distance of several to around 10 cm from each other.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Magnets made of neodymium are known for their fragility, which can cause them to shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Safety rules!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.
