MPL 5x5x1.5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020172
GTIN/EAN: 5906301811787
length
5 mm [±0,1 mm]
Width
5 mm [±0,1 mm]
Height
1.5 mm [±0,1 mm]
Weight
0.28 g
Magnetization Direction
↑ axial
Load capacity
0.58 kg / 5.68 N
Magnetic Induction
293.49 mT / 2935 Gs
Coating
[NiCuNi] Nickel
0.1845 ZŁ with VAT / pcs + price for transport
0.1500 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 22 499 98 98
if you prefer get in touch by means of
contact form
the contact section.
Strength as well as form of neodymium magnets can be verified with our
modular calculator.
Same-day processing for orders placed before 14:00.
Product card - MPL 5x5x1.5 / N38 - lamellar magnet
Specification / characteristics - MPL 5x5x1.5 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020172 |
| GTIN/EAN | 5906301811787 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 5 mm [±0,1 mm] |
| Width | 5 mm [±0,1 mm] |
| Height | 1.5 mm [±0,1 mm] |
| Weight | 0.28 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.58 kg / 5.68 N |
| Magnetic Induction ~ ? | 293.49 mT / 2935 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical simulation of the magnet - data
These values are the result of a mathematical simulation. Results rely on models for the material Nd2Fe14B. Real-world performance may differ. Treat these calculations as a preliminary roadmap for designers.
Table 1: Static force (force vs gap) - interaction chart
MPL 5x5x1.5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2932 Gs
293.2 mT
|
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
|
low risk |
| 1 mm |
2036 Gs
203.6 mT
|
0.28 kg / 0.62 lbs
279.6 g / 2.7 N
|
low risk |
| 2 mm |
1228 Gs
122.8 mT
|
0.10 kg / 0.22 lbs
101.7 g / 1.0 N
|
low risk |
| 3 mm |
727 Gs
72.7 mT
|
0.04 kg / 0.08 lbs
35.7 g / 0.3 N
|
low risk |
| 5 mm |
285 Gs
28.5 mT
|
0.01 kg / 0.01 lbs
5.5 g / 0.1 N
|
low risk |
| 10 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
low risk |
| 15 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 20 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 30 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
Table 2: Sliding capacity (wall)
MPL 5x5x1.5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
116.0 g / 1.1 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 0.12 lbs
56.0 g / 0.5 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MPL 5x5x1.5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.17 kg / 0.38 lbs
174.0 g / 1.7 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.12 kg / 0.26 lbs
116.0 g / 1.1 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.29 kg / 0.64 lbs
290.0 g / 2.8 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MPL 5x5x1.5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| 1 mm |
|
0.15 kg / 0.32 lbs
145.0 g / 1.4 N
|
| 2 mm |
|
0.29 kg / 0.64 lbs
290.0 g / 2.8 N
|
| 3 mm |
|
0.43 kg / 0.96 lbs
435.0 g / 4.3 N
|
| 5 mm |
|
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
|
| 10 mm |
|
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
|
| 11 mm |
|
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
|
| 12 mm |
|
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
|
Table 5: Working in heat (stability) - thermal limit
MPL 5x5x1.5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
|
OK |
| 40 °C | -2.2% |
0.57 kg / 1.25 lbs
567.2 g / 5.6 N
|
OK |
| 60 °C | -4.4% |
0.55 kg / 1.22 lbs
554.5 g / 5.4 N
|
|
| 80 °C | -6.6% |
0.54 kg / 1.19 lbs
541.7 g / 5.3 N
|
|
| 100 °C | -28.8% |
0.41 kg / 0.91 lbs
413.0 g / 4.1 N
|
Table 6: Two magnets (repulsion) - forces in the system
MPL 5x5x1.5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.33 kg / 2.92 lbs
4 518 Gs
|
0.20 kg / 0.44 lbs
199 g / 1.9 N
|
N/A |
| 1 mm |
0.97 kg / 2.15 lbs
5 027 Gs
|
0.15 kg / 0.32 lbs
146 g / 1.4 N
|
0.88 kg / 1.93 lbs
~0 Gs
|
| 2 mm |
0.64 kg / 1.41 lbs
4 071 Gs
|
0.10 kg / 0.21 lbs
96 g / 0.9 N
|
0.57 kg / 1.27 lbs
~0 Gs
|
| 3 mm |
0.39 kg / 0.86 lbs
3 188 Gs
|
0.06 kg / 0.13 lbs
59 g / 0.6 N
|
0.35 kg / 0.78 lbs
~0 Gs
|
| 5 mm |
0.14 kg / 0.30 lbs
1 886 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 10 mm |
0.01 kg / 0.03 lbs
569 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
108 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (implants) - warnings
MPL 5x5x1.5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 2.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 1.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.5 cm |
| Car key | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MPL 5x5x1.5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
45.91 km/h
(12.75 m/s)
|
0.02 J | |
| 30 mm |
79.50 km/h
(22.08 m/s)
|
0.07 J | |
| 50 mm |
102.64 km/h
(28.51 m/s)
|
0.11 J | |
| 100 mm |
145.15 km/h
(40.32 m/s)
|
0.23 J |
Table 9: Coating parameters (durability)
MPL 5x5x1.5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MPL 5x5x1.5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 799 Mx | 8.0 µWb |
| Pc Coefficient | 0.36 | Low (Flat) |
Table 11: Submerged application
MPL 5x5x1.5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.58 kg | Standard |
| Water (riverbed) |
0.66 kg
(+0.08 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical wall, the magnet retains only approx. 20-30% of its perpendicular strength.
2. Efficiency vs thickness
*Thin metal sheet (e.g. computer case) drastically weakens the holding force.
3. Heat tolerance
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.36
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other proposals
Advantages and disadvantages of neodymium magnets.
Strengths
- They have constant strength, and over nearly ten years their performance decreases symbolically – ~1% (in testing),
- Magnets very well resist against loss of magnetization caused by ambient magnetic noise,
- The use of an refined layer of noble metals (nickel, gold, silver) causes the element to be more visually attractive,
- The surface of neodymium magnets generates a maximum magnetic field – this is a distinguishing feature,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the form) even at high temperatures reaching 230°C or more...
- Thanks to the ability of flexible shaping and customization to custom needs, magnetic components can be modeled in a wide range of geometric configurations, which makes them more universal,
- Fundamental importance in modern industrial fields – they serve a role in computer drives, electric motors, medical equipment, as well as technologically advanced constructions.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in compact dimensions, which makes them useful in miniature devices
Limitations
- Susceptibility to cracking is one of their disadvantages. Upon intense impact they can fracture. We advise keeping them in a special holder, which not only protects them against impacts but also increases their durability
- When exposed to high temperature, neodymium magnets suffer a drop in strength. Often, when the temperature exceeds 80°C, their power decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- When exposed to humidity, magnets start to rust. For applications outside, it is recommended to use protective magnets, such as those in rubber or plastics, which secure oxidation as well as corrosion.
- Due to limitations in creating nuts and complicated shapes in magnets, we propose using a housing - magnetic mount.
- Potential hazard to health – tiny shards of magnets can be dangerous, in case of ingestion, which is particularly important in the context of child health protection. Furthermore, small components of these products can disrupt the diagnostic process medical after entering the body.
- With budget limitations the cost of neodymium magnets can be a barrier,
Holding force characteristics
Maximum lifting force for a neodymium magnet – what contributes to it?
- on a base made of mild steel, perfectly concentrating the magnetic field
- possessing a thickness of at least 10 mm to ensure full flux closure
- with a surface perfectly flat
- with zero gap (no paint)
- under axial application of breakaway force (90-degree angle)
- in stable room temperature
Impact of factors on magnetic holding capacity in practice
- Gap between surfaces – even a fraction of a millimeter of distance (caused e.g. by varnish or unevenness) significantly weakens the magnet efficiency, often by half at just 0.5 mm.
- Force direction – remember that the magnet has greatest strength perpendicularly. Under sliding down, the holding force drops significantly, often to levels of 20-30% of the maximum value.
- Plate thickness – insufficiently thick sheet does not accept the full field, causing part of the power to be lost to the other side.
- Material type – the best choice is pure iron steel. Stainless steels may generate lower lifting capacity.
- Plate texture – ground elements guarantee perfect abutment, which improves force. Uneven metal weaken the grip.
- Temperature – temperature increase results in weakening of induction. Check the maximum operating temperature for a given model.
Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, in contrast under shearing force the load capacity is reduced by as much as fivefold. Additionally, even a slight gap between the magnet and the plate decreases the holding force.
Safety rules for work with neodymium magnets
Allergic reactions
Medical facts indicate that the nickel plating (standard magnet coating) is a strong allergen. If your skin reacts to metals, prevent direct skin contact or choose versions in plastic housing.
Serious injuries
Risk of injury: The attraction force is so immense that it can cause blood blisters, pinching, and broken bones. Use thick gloves.
Thermal limits
Avoid heat. Neodymium magnets are susceptible to heat. If you require resistance above 80°C, inquire about HT versions (H, SH, UH).
Magnetic media
Equipment safety: Strong magnets can damage payment cards and delicate electronics (heart implants, hearing aids, timepieces).
Medical interference
For implant holders: Powerful magnets affect medical devices. Keep minimum 30 cm distance or ask another person to work with the magnets.
Magnets are brittle
Beware of splinters. Magnets can fracture upon violent connection, ejecting shards into the air. Wear goggles.
Choking Hazard
Neodymium magnets are not toys. Swallowing multiple magnets may result in them pinching intestinal walls, which poses a direct threat to life and requires immediate surgery.
Handling guide
Be careful. Neodymium magnets act from a long distance and snap with huge force, often faster than you can move away.
Keep away from electronics
A powerful magnetic field disrupts the operation of magnetometers in phones and navigation systems. Keep magnets close to a device to prevent breaking the sensors.
Do not drill into magnets
Powder generated during machining of magnets is flammable. Do not drill into magnets unless you are an expert.
