MPL 5x5x1.5 / N38 - neodymium magnet
lamellar magnet
catalog number 020172
GTIN: 5906301811787
length
5
mm [±0,1 mm]
width
5
mm [±0,1 mm]
height
1.5
mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
0.59 kg / 5.79 N
magnetic induction ~
293.49 mT / 2,935 Gs
max. temperature
≤ 80
°C
catalog number 020172
GTIN: 5906301811787
length
5 mm [±0,1 mm]
width
5 mm [±0,1 mm]
height
1.5 mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
0.59 kg / 5.79 N
magnetic induction ~
293.49 mT / 2,935 Gs
max. temperature
≤ 80 °C
0.18 ZŁ gross price (including VAT) / pcs +
0.15 ZŁ net price + 23% VAT / pcs
bulk discounts:
need more quantity?Don't know what to buy?
Call us tel: +48 888 99 98 98 or contact us via form on the contact page. You can check the strength and the appearance of neodymium magnet in our force calculator power calculator
Orders placed by 2:00 PM will be shipped on the same business day.
Specification: lamellar magnet 5x5x1.5 / N38 ↑ axial
Magnetic properties of the material N38
Physical properties of sintered neodymium magnets Nd2Fe14B
Due to their strength, flat magnets are frequently applied in structures that require strong holding power.
Most common temperature resistance of these magnets is 80 °C, but depending on the dimensions, this value rises.
Moreover, flat magnets usually have special coatings applied to their surfaces, such as nickel, gold, or chrome, to increase their corrosion resistance.
The magnet with the designation MPL 5x5x1.5 / N38 i.e. a magnetic strength 0.59 kg with a weight of just 0.28 grams, making it the perfect choice for projects needing a flat magnet.
Contact surface: Thanks to their flat shape, flat magnets guarantee a larger contact surface with other components, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: These are often utilized in different devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is important for their operation.
Mounting: This form's flat shape makes it easier mounting, particularly when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets gives the possibility designers a lot of flexibility in placing them in structures, which can be more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet can offer better stability, reducing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet is dependent on the given use and requirements. In some cases, other shapes, such as cylindrical or spherical, are a better choice.
Magnets have two main poles: north (N) and south (S), which interact with each other when they are different. Poles of the same kind, e.g. two north poles, repel each other.
Thanks to this principle of operation, magnets are regularly used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them ideal for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its size and the materials used.
It should be noted that high temperatures can weaken the magnet's effect. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards or medical equipment, like pacemakers. Therefore, it is important to avoid placing magnets near such devices.
Find suggested articles
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from immense strength, neodymium magnets have the following advantages:
- They do not lose their strength (of the magnet). After approximately 10 years, their strength decreases by only ~1% (theoretically),
- They are highly resistant to demagnetization by external magnetic sources,
- By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
- They have very high magnetic induction on the surface of the magnet,
- Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
- Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in various forms and dimensions, which enhances their versatility in applications.
- Key role in the industry of new technologies – find application in HDD drives, electric drive mechanisms, medical apparatus and other advanced devices.
Disadvantages of neodymium magnets:
- They are prone to breaking as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, it is suggested using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
- High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent reduction in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
- They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
- Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
- Possible danger associated with microscopic parts of magnets can be dangerous, in case of ingestion, which becomes significant in the context of children's health. Furthermore, miniscule components of these devices have the potential to hinder the diagnostic process after entering the body.
Safety Precautions
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when attract. Depending on how large the neodymium magnets are, they can lead to a cut or a fracture.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets are particularly delicate, which leads to shattering.
Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are powerful neodymium magnets?.