MW 12x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010016
GTIN/EAN: 5906301810155
Diameter Ø
12 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
8.48 g
Magnetization Direction
↑ axial
Load capacity
4.83 kg / 47.41 N
Magnetic Induction
531.09 mT / 5311 Gs
Coating
[NiCuNi] Nickel
3.03 ZŁ with VAT / pcs + price for transport
2.46 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
alternatively let us know via
our online form
the contact form page.
Force along with shape of neodymium magnets can be estimated on our
force calculator.
Orders submitted before 14:00 will be dispatched today!
Technical of the product - MW 12x10 / N38 - cylindrical magnet
Specification / characteristics - MW 12x10 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010016 |
| GTIN/EAN | 5906301810155 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 12 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 8.48 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 4.83 kg / 47.41 N |
| Magnetic Induction ~ ? | 531.09 mT / 5311 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical analysis of the assembly - technical parameters
The following values represent the outcome of a mathematical simulation. Values were calculated on algorithms for the material Nd2Fe14B. Operational performance might slightly differ from theoretical values. Treat these calculations as a supplementary guide during assembly planning.
Table 1: Static pull force (pull vs gap) - power drop
MW 12x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5308 Gs
530.8 mT
|
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
warning |
| 1 mm |
4424 Gs
442.4 mT
|
3.36 kg / 7.40 lbs
3355.3 g / 32.9 N
|
warning |
| 2 mm |
3585 Gs
358.5 mT
|
2.20 kg / 4.86 lbs
2203.4 g / 21.6 N
|
warning |
| 3 mm |
2857 Gs
285.7 mT
|
1.40 kg / 3.08 lbs
1399.2 g / 13.7 N
|
safe |
| 5 mm |
1787 Gs
178.7 mT
|
0.55 kg / 1.21 lbs
547.8 g / 5.4 N
|
safe |
| 10 mm |
622 Gs
62.2 mT
|
0.07 kg / 0.15 lbs
66.3 g / 0.7 N
|
safe |
| 15 mm |
272 Gs
27.2 mT
|
0.01 kg / 0.03 lbs
12.7 g / 0.1 N
|
safe |
| 20 mm |
141 Gs
14.1 mT
|
0.00 kg / 0.01 lbs
3.4 g / 0.0 N
|
safe |
| 30 mm |
52 Gs
5.2 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
safe |
| 50 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Shear force (vertical surface)
MW 12x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.97 kg / 2.13 lbs
966.0 g / 9.5 N
|
| 1 mm | Stal (~0.2) |
0.67 kg / 1.48 lbs
672.0 g / 6.6 N
|
| 2 mm | Stal (~0.2) |
0.44 kg / 0.97 lbs
440.0 g / 4.3 N
|
| 3 mm | Stal (~0.2) |
0.28 kg / 0.62 lbs
280.0 g / 2.7 N
|
| 5 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
110.0 g / 1.1 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MW 12x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
1.45 kg / 3.19 lbs
1449.0 g / 14.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.97 kg / 2.13 lbs
966.0 g / 9.5 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.48 kg / 1.06 lbs
483.0 g / 4.7 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
2.42 kg / 5.32 lbs
2415.0 g / 23.7 N
|
Table 4: Steel thickness (substrate influence) - power losses
MW 12x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.48 kg / 1.06 lbs
483.0 g / 4.7 N
|
| 1 mm |
|
1.21 kg / 2.66 lbs
1207.5 g / 11.8 N
|
| 2 mm |
|
2.42 kg / 5.32 lbs
2415.0 g / 23.7 N
|
| 3 mm |
|
3.62 kg / 7.99 lbs
3622.5 g / 35.5 N
|
| 5 mm |
|
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
| 10 mm |
|
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
| 11 mm |
|
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
| 12 mm |
|
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
Table 5: Working in heat (material behavior) - thermal limit
MW 12x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.83 kg / 10.65 lbs
4830.0 g / 47.4 N
|
OK |
| 40 °C | -2.2% |
4.72 kg / 10.41 lbs
4723.7 g / 46.3 N
|
OK |
| 60 °C | -4.4% |
4.62 kg / 10.18 lbs
4617.5 g / 45.3 N
|
OK |
| 80 °C | -6.6% |
4.51 kg / 9.95 lbs
4511.2 g / 44.3 N
|
|
| 100 °C | -28.8% |
3.44 kg / 7.58 lbs
3439.0 g / 33.7 N
|
Table 6: Two magnets (repulsion) - forces in the system
MW 12x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
19.64 kg / 43.30 lbs
5 928 Gs
|
2.95 kg / 6.50 lbs
2946 g / 28.9 N
|
N/A |
| 1 mm |
16.52 kg / 36.43 lbs
9 736 Gs
|
2.48 kg / 5.46 lbs
2479 g / 24.3 N
|
14.87 kg / 32.79 lbs
~0 Gs
|
| 2 mm |
13.64 kg / 30.08 lbs
8 847 Gs
|
2.05 kg / 4.51 lbs
2047 g / 20.1 N
|
12.28 kg / 27.07 lbs
~0 Gs
|
| 3 mm |
11.12 kg / 24.51 lbs
7 986 Gs
|
1.67 kg / 3.68 lbs
1668 g / 16.4 N
|
10.01 kg / 22.06 lbs
~0 Gs
|
| 5 mm |
7.16 kg / 15.79 lbs
6 410 Gs
|
1.07 kg / 2.37 lbs
1074 g / 10.5 N
|
6.45 kg / 14.21 lbs
~0 Gs
|
| 10 mm |
2.23 kg / 4.91 lbs
3 575 Gs
|
0.33 kg / 0.74 lbs
334 g / 3.3 N
|
2.00 kg / 4.42 lbs
~0 Gs
|
| 20 mm |
0.27 kg / 0.59 lbs
1 244 Gs
|
0.04 kg / 0.09 lbs
40 g / 0.4 N
|
0.24 kg / 0.54 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
164 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
104 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
70 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
49 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MW 12x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 7.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 6.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 4.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 3.5 cm |
| Car key | 50 Gs (5.0 mT) | 3.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Collisions (cracking risk) - collision effects
MW 12x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
24.27 km/h
(6.74 m/s)
|
0.19 J | |
| 30 mm |
41.69 km/h
(11.58 m/s)
|
0.57 J | |
| 50 mm |
53.82 km/h
(14.95 m/s)
|
0.95 J | |
| 100 mm |
76.11 km/h
(21.14 m/s)
|
1.90 J |
Table 9: Surface protection spec
MW 12x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MW 12x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 6 105 Mx | 61.1 µWb |
| Pc Coefficient | 0.81 | High (Stable) |
Table 11: Underwater work (magnet fishing)
MW 12x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 4.83 kg | Standard |
| Water (riverbed) |
5.53 kg
(+0.70 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Caution: On a vertical surface, the magnet retains only a fraction of its max power.
2. Efficiency vs thickness
*Thin steel (e.g. computer case) drastically limits the holding force.
3. Thermal stability
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.81
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other proposals
Strengths and weaknesses of neodymium magnets.
Pros
- They do not lose strength, even during around ten years – the reduction in lifting capacity is only ~1% (theoretically),
- Neodymium magnets are characterized by highly resistant to demagnetization caused by external magnetic fields,
- A magnet with a metallic silver surface has better aesthetics,
- They are known for high magnetic induction at the operating surface, making them more effective,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
- Possibility of accurate machining as well as adjusting to specific requirements,
- Significant place in future technologies – they serve a role in magnetic memories, electric drive systems, precision medical tools, and other advanced devices.
- Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications
Cons
- To avoid cracks upon strong impacts, we suggest using special steel housings. Such a solution protects the magnet and simultaneously increases its durability.
- We warn that neodymium magnets can reduce their power at high temperatures. To prevent this, we suggest our specialized [AH] magnets, which work effectively even at 230°C.
- Magnets exposed to a humid environment can rust. Therefore when using outdoors, we suggest using water-impermeable magnets made of rubber, plastic or other material protecting against moisture
- Due to limitations in producing nuts and complex shapes in magnets, we recommend using a housing - magnetic mechanism.
- Health risk to health – tiny shards of magnets can be dangerous, in case of ingestion, which becomes key in the context of child safety. Furthermore, small elements of these devices are able to be problematic in diagnostics medical when they are in the body.
- With budget limitations the cost of neodymium magnets can be a barrier,
Lifting parameters
Maximum lifting capacity of the magnet – what affects it?
- on a block made of mild steel, perfectly concentrating the magnetic flux
- possessing a thickness of minimum 10 mm to ensure full flux closure
- characterized by even structure
- with zero gap (no coatings)
- during detachment in a direction perpendicular to the mounting surface
- at temperature room level
Impact of factors on magnetic holding capacity in practice
- Air gap (between the magnet and the metal), since even a very small clearance (e.g. 0.5 mm) results in a drastic drop in force by up to 50% (this also applies to paint, corrosion or dirt).
- Force direction – declared lifting capacity refers to detachment vertically. When slipping, the magnet holds much less (often approx. 20-30% of maximum force).
- Element thickness – to utilize 100% power, the steel must be sufficiently thick. Paper-thin metal restricts the attraction force (the magnet "punches through" it).
- Steel grade – the best choice is pure iron steel. Cast iron may generate lower lifting capacity.
- Surface finish – full contact is obtained only on polished steel. Any scratches and bumps create air cushions, weakening the magnet.
- Temperature influence – hot environment reduces magnetic field. Exceeding the limit temperature can permanently demagnetize the magnet.
Lifting capacity was measured using a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, however under shearing force the load capacity is reduced by as much as fivefold. Moreover, even a minimal clearance between the magnet’s surface and the plate reduces the load capacity.
Precautions when working with NdFeB magnets
Fire risk
Powder generated during machining of magnets is flammable. Do not drill into magnets unless you are an expert.
Powerful field
Before use, read the rules. Uncontrolled attraction can destroy the magnet or hurt your hand. Be predictive.
Precision electronics
An intense magnetic field interferes with the functioning of compasses in phones and navigation systems. Maintain magnets near a device to avoid damaging the sensors.
Heat sensitivity
Monitor thermal conditions. Exposing the magnet to high heat will destroy its properties and strength.
Pacemakers
Life threat: Neodymium magnets can deactivate pacemakers and defibrillators. Do not approach if you have electronic implants.
Risk of cracking
Despite the nickel coating, neodymium is brittle and cannot withstand shocks. Do not hit, as the magnet may crumble into sharp, dangerous pieces.
No play value
Neodymium magnets are not suitable for play. Eating a few magnets can lead to them pinching intestinal walls, which poses a critical condition and requires immediate surgery.
Crushing risk
Big blocks can break fingers instantly. Never place your hand betwixt two strong magnets.
Protect data
Data protection: Strong magnets can damage data carriers and sensitive devices (pacemakers, hearing aids, timepieces).
Metal Allergy
Allergy Notice: The nickel-copper-nickel coating consists of nickel. If redness appears, immediately stop handling magnets and wear gloves.
