MP 5x1.5x3 / N38 - ring magnet
ring magnet
Catalog no 030451
GTIN: 5906301812357
Diameter [±0,1 mm]
5 mm
internal diameter Ø [±0,1 mm]
1.5 mm
Height [±0,1 mm]
3 mm
Weight
2.47 g
Magnetization Direction
↑ axial
Load capacity
0.56 kg / 5.49 N
Magnetic Induction
121.27 mT
Coating
[NiCuNi] nickel
0.344 ZŁ with VAT / pcs + price for transport
0.280 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Contact us by phone
+48 888 99 98 98
if you prefer contact us via
request form
our website.
Lifting power and structure of magnets can be tested with our
magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
MP 5x1.5x3 / N38 - ring magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their notable holding force, neodymium magnets have these key benefits:
- They retain their magnetic properties for almost 10 years – the loss is just ~1% (in theory),
- They are highly resistant to demagnetization caused by external magnetic sources,
- Because of the reflective layer of silver, the component looks aesthetically refined,
- They have extremely strong magnetic induction on the surface of the magnet,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which expands their application range,
- Wide application in advanced technical fields – they serve a purpose in HDDs, rotating machines, healthcare devices and high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them useful in small systems
Disadvantages of NdFeB magnets:
- They can break when subjected to a heavy impact. If the magnets are exposed to shocks, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and additionally strengthens its overall strength,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a damp environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing fine shapes directly in the magnet,
- Potential hazard due to small fragments may arise, in case of ingestion, which is crucial in the family environments. Additionally, tiny components from these assemblies might disrupt scanning after being swallowed,
- In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,
Best holding force of the magnet in ideal parameters – what contributes to it?
The given holding capacity of the magnet means the highest holding force, calculated in ideal conditions, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- with a thickness of minimum 10 mm
- with a smooth surface
- with no separation
- under perpendicular detachment force
- at room temperature
Key elements affecting lifting force
Practical lifting force is determined by elements, by priority:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined by applying a polished steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, whereas under shearing force the holding force is lower. Moreover, even a slight gap {between} the magnet’s surface and the plate reduces the holding force.
We Recommend Caution with Neodymium Magnets
Neodymium magnets should not be in the vicinity children.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are particularly fragile, which leads to damage.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Neodymium magnets will jump and touch together within a radius of several to around 10 cm from each other.
Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can surprise you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Caution!
So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.
