tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. Practically all "magnets" in our store are available for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in airtight and durable steel casing are perfect for use in challenging weather, including during rain and snow see more...

magnetic holders

Holders with magnets can be used to improve production processes, underwater discoveries, or searching for meteors from gold more information...

We promise to ship ordered magnets if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 5x1.5x3 / N38 - ring magnet

ring magnet

Catalog no 030451

GTIN: 5906301812357

5

Diameter [±0,1 mm]

5 mm

internal diameter Ø [±0,1 mm]

1.5 mm

Height [±0,1 mm]

3 mm

Weight

2.47 g

Magnetization Direction

↑ axial

Load capacity

0.56 kg / 5.49 N

Magnetic Induction

121.27 mT

Coating

[NiCuNi] nickel

0.34 with VAT / pcs + price for transport

0.28 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.28 ZŁ
0.34 ZŁ
price from 2143 pcs
0.26 ZŁ
0.32 ZŁ
price from 7858 pcs
0.25 ZŁ
0.30 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MP 5x1.5x3 / N38 - ring magnet

Specification/characteristics MP 5x1.5x3 / N38 - ring magnet
properties
values
Cat. no.
030451
GTIN
5906301812357
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
5 mm [±0,1 mm]
internal diameter Ø
1.5 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
2.47 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.56 kg / 5.49 N
Magnetic Induction ~ ?
121.27 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium magnets MP 5x1.5x3 / N38 in a ring form are frequently used in various industries due to their unique properties. Thanks to a powerful magnetic field of 0.56 kg, which can be described as strength, they are very helpful in applications that require high magnetic power in a relatively small area. Usage of MP 5x1.5x3 / N38 magnets include electric motors, generators, audio systems, and several other devices that use magnets for producing motion or energy storage. Despite their powerful strength, they have a comparatively low weight of 2.47 grams, which makes them more convenient to use compared to heavier alternatives.
Ring magnets work due to their atomic structure. In the production process, neodymium atoms are arranged appropriately, which allows for the creation of a concentrated magnetic field in a specific direction. This makes them perfect for devices such as stepper motors or industrial robots. Moreover, their resistance to high temperatures and demagnetization makes them indispensable in industry.
They are used in various fields of technology and industry, such as production of electronic devices, such as speakers and electric motors, the automotive industry, e.g., in the construction of electric motors, and medical equipment, e.g., in scanning devices. Their ability to work in high temperatures and precise magnetic field control makes them ideal for technologically advanced applications.
Their uniqueness comes from high magnetic strength, ability to work in extreme conditions, precise control of the magnetic field. Thanks to their ring shape allows for application in devices requiring concentrated magnetic fields. Moreover, these magnets are significantly stronger and more versatile than ferrite counterparts, which has made them popular in advanced technologies and industrial applications.
Ring magnets perform excellently across a wide range of temperatures. Their magnetic properties remain stable, until the Curie temperature is exceeded, which for neodymium magnets is around 80°C. They are more resistant to loss of magnetism than traditional ferrite magnets. For this reason, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time - after 10 years, their strength decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which enhances their versatility in applications.
  • Wide application in modern technologies – are used in HDD drives, electric drive mechanisms, medical devices and very highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Health risk associated with microscopic parts of magnets are risky, in case of ingestion, which becomes significant in the context of children's health. Additionally, miniscule components of these devices have the potential to be problematic in medical diagnosis after entering the body.

Caution with Neodymium Magnets

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will crack or alternatively crumble with uncontrolled joining to each other. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets are fragile as well as can easily break as well as shatter.

Neodymium magnets are characterized by considerable fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can surprise you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Safety precautions!

In order to illustrate why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98