UMP 94x28 [3xM10] GW F300 GOLD Lina / N38 - search holder
search holder
Catalog no 210446
GTIN: 5906301814108
Diameter Ø [±0,1 mm]
94 mm
Height [±0,1 mm]
28 mm
Weight
1600 g
Load capacity
330 kg / 3236.19 N
Coating
[NiCuNi] nickel
300.00 ZŁ with VAT / pcs + price for transport
243.90 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Pick up the phone and ask
+48 22 499 98 98
otherwise let us know through
request form
our website.
Parameters as well as shape of magnets can be reviewed with our
our magnetic calculator.
Same-day processing for orders placed before 14:00.
UMP 94x28 [3xM10] GW F300 GOLD Lina / N38 - search holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their strong magnetic energy, neodymium magnets have these key benefits:
- They virtually do not lose strength, because even after 10 years, the performance loss is only ~1% (in laboratory conditions),
- They are highly resistant to demagnetization caused by external field interference,
- Because of the lustrous layer of silver, the component looks visually appealing,
- Magnetic induction on the surface of these magnets is impressively powerful,
- These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to profile),
- The ability for accurate shaping and customization to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
- Important function in advanced technical fields – they are utilized in data storage devices, rotating machines, healthcare devices along with high-tech tools,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to shocks, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and additionally strengthens its overall robustness,
- They lose strength at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a damp environment, especially when used outside, we recommend using encapsulated magnets, such as those made of non-metallic materials,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing threads directly in the magnet,
- Health risk linked to microscopic shards may arise, if ingested accidentally, which is significant in the context of child safety. Moreover, small elements from these magnets might disrupt scanning when ingested,
- In cases of tight budgets, neodymium magnet cost may be a barrier,
Maximum lifting force for a neodymium magnet – what contributes to it?
The given holding capacity of the magnet represents the highest holding force, assessed in ideal conditions, namely:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a smooth surface
- in conditions of no clearance
- with vertical force applied
- under standard ambient temperature
Magnet lifting force in use – key factors
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of optimal thickness, under perpendicular forces, in contrast under attempts to slide the magnet the holding force is lower. Additionally, even a small distance {between} the magnet and the plate lowers the holding force.
Handle Neodymium Magnets with Caution
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Magnets made of neodymium are fragile as well as can easily break as well as shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets will bounce and clash together within a radius of several to around 10 cm from each other.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Warning!
In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.