Powerful neodymium magnets: discs and cylinders

Need strong magnetic field? We have in stock wide selection of various shapes and sizes. Best choice for home use, workshop and industrial tasks. See products available immediately.

check full offer

Equipment for treasure hunters

Discover your passion involving underwater treasure hunting! Our specialized grips (F200, F400) provide safety guarantee and huge lifting capacity. Stainless steel construction and strong lines will perform in rivers and lakes.

choose your set

Reliable threaded grips

Reliable solutions for mounting non-invasive. Threaded mounts (M8, M10, M12) guarantee instant organization of work on production halls. They are indispensable installing lighting, sensors and ads.

see industrial applications

🚚 Order by 14:00 – we'll ship today!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MW 10x6 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010012

GTIN/EAN: 5906301810117

5.00

Diameter Ø

10 mm [±0,1 mm]

Height

6 mm [±0,1 mm]

Weight

3.53 g

Magnetization Direction

↑ axial

Load capacity

3.38 kg / 33.12 N

Magnetic Induction

475.73 mT / 4757 Gs

Coating

[NiCuNi] Nickel

1.045 with VAT / pcs + price for transport

0.850 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.850 ZŁ
1.045 ZŁ
price from 800 pcs
0.799 ZŁ
0.983 ZŁ
price from 3000 pcs
0.748 ZŁ
0.920 ZŁ
Need advice?

Contact us by phone +48 22 499 98 98 alternatively send us a note through form the contact page.
Parameters as well as form of a magnet can be reviewed using our our magnetic calculator.

Same-day shipping for orders placed before 14:00.

Technical of the product - MW 10x6 / N38 - cylindrical magnet

Specification / characteristics - MW 10x6 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010012
GTIN/EAN 5906301810117
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 10 mm [±0,1 mm]
Height 6 mm [±0,1 mm]
Weight 3.53 g
Magnetization Direction ↑ axial
Load capacity ~ ? 3.38 kg / 33.12 N
Magnetic Induction ~ ? 475.73 mT / 4757 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 10x6 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Physical modeling of the assembly - data

These information represent the result of a engineering simulation. Values are based on models for the material Nd2Fe14B. Real-world conditions might slightly deviate from the simulation results. Please consider these calculations as a preliminary roadmap for designers.

Table 1: Static pull force (force vs distance) - power drop
MW 10x6 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 4754 Gs
475.4 mT
3.38 kg / 7.45 LBS
3380.0 g / 33.2 N
strong
1 mm 3829 Gs
382.9 mT
2.19 kg / 4.83 LBS
2193.1 g / 21.5 N
strong
2 mm 2955 Gs
295.5 mT
1.31 kg / 2.88 LBS
1306.0 g / 12.8 N
safe
3 mm 2230 Gs
223.0 mT
0.74 kg / 1.64 LBS
743.7 g / 7.3 N
safe
5 mm 1260 Gs
126.0 mT
0.24 kg / 0.52 LBS
237.5 g / 2.3 N
safe
10 mm 372 Gs
37.2 mT
0.02 kg / 0.05 LBS
20.7 g / 0.2 N
safe
15 mm 150 Gs
15.0 mT
0.00 kg / 0.01 LBS
3.3 g / 0.0 N
safe
20 mm 74 Gs
7.4 mT
0.00 kg / 0.00 LBS
0.8 g / 0.0 N
safe
30 mm 25 Gs
2.5 mT
0.00 kg / 0.00 LBS
0.1 g / 0.0 N
safe
50 mm 6 Gs
0.6 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
safe

Table 2: Sliding force (wall)
MW 10x6 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.68 kg / 1.49 LBS
676.0 g / 6.6 N
1 mm Stal (~0.2) 0.44 kg / 0.97 LBS
438.0 g / 4.3 N
2 mm Stal (~0.2) 0.26 kg / 0.58 LBS
262.0 g / 2.6 N
3 mm Stal (~0.2) 0.15 kg / 0.33 LBS
148.0 g / 1.5 N
5 mm Stal (~0.2) 0.05 kg / 0.11 LBS
48.0 g / 0.5 N
10 mm Stal (~0.2) 0.00 kg / 0.01 LBS
4.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N

Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 10x6 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
1.01 kg / 2.24 LBS
1014.0 g / 9.9 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.68 kg / 1.49 LBS
676.0 g / 6.6 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.34 kg / 0.75 LBS
338.0 g / 3.3 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
1.69 kg / 3.73 LBS
1690.0 g / 16.6 N

Table 4: Steel thickness (substrate influence) - power losses
MW 10x6 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.34 kg / 0.75 LBS
338.0 g / 3.3 N
1 mm
25%
0.85 kg / 1.86 LBS
845.0 g / 8.3 N
2 mm
50%
1.69 kg / 3.73 LBS
1690.0 g / 16.6 N
3 mm
75%
2.54 kg / 5.59 LBS
2535.0 g / 24.9 N
5 mm
100%
3.38 kg / 7.45 LBS
3380.0 g / 33.2 N
10 mm
100%
3.38 kg / 7.45 LBS
3380.0 g / 33.2 N
11 mm
100%
3.38 kg / 7.45 LBS
3380.0 g / 33.2 N
12 mm
100%
3.38 kg / 7.45 LBS
3380.0 g / 33.2 N

Table 5: Thermal resistance (stability) - power drop
MW 10x6 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 3.38 kg / 7.45 LBS
3380.0 g / 33.2 N
OK
40 °C -2.2% 3.31 kg / 7.29 LBS
3305.6 g / 32.4 N
OK
60 °C -4.4% 3.23 kg / 7.12 LBS
3231.3 g / 31.7 N
OK
80 °C -6.6% 3.16 kg / 6.96 LBS
3156.9 g / 31.0 N
100 °C -28.8% 2.41 kg / 5.31 LBS
2406.6 g / 23.6 N

Table 6: Magnet-Magnet interaction (repulsion) - field range
MW 10x6 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Sliding Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 10.94 kg / 24.12 LBS
5 711 Gs
1.64 kg / 3.62 LBS
1641 g / 16.1 N
N/A
1 mm 8.94 kg / 19.71 LBS
8 595 Gs
1.34 kg / 2.96 LBS
1341 g / 13.2 N
8.05 kg / 17.74 LBS
~0 Gs
2 mm 7.10 kg / 15.65 LBS
7 658 Gs
1.06 kg / 2.35 LBS
1065 g / 10.4 N
6.39 kg / 14.09 LBS
~0 Gs
3 mm 5.52 kg / 12.17 LBS
6 754 Gs
0.83 kg / 1.83 LBS
828 g / 8.1 N
4.97 kg / 10.96 LBS
~0 Gs
5 mm 3.20 kg / 7.06 LBS
5 143 Gs
0.48 kg / 1.06 LBS
480 g / 4.7 N
2.88 kg / 6.35 LBS
~0 Gs
10 mm 0.77 kg / 1.70 LBS
2 520 Gs
0.12 kg / 0.25 LBS
115 g / 1.1 N
0.69 kg / 1.53 LBS
~0 Gs
20 mm 0.07 kg / 0.15 LBS
745 Gs
0.01 kg / 0.02 LBS
10 g / 0.1 N
0.06 kg / 0.13 LBS
~0 Gs
50 mm 0.00 kg / 0.00 LBS
83 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
60 mm 0.00 kg / 0.00 LBS
51 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
70 mm 0.00 kg / 0.00 LBS
33 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
80 mm 0.00 kg / 0.00 LBS
23 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
90 mm 0.00 kg / 0.00 LBS
17 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
100 mm 0.00 kg / 0.00 LBS
12 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs

Table 7: Hazards (electronics) - precautionary measures
MW 10x6 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 5.5 cm
Hearing aid 10 Gs (1.0 mT) 4.5 cm
Mechanical watch 20 Gs (2.0 mT) 3.5 cm
Phone / Smartphone 40 Gs (4.0 mT) 3.0 cm
Remote 50 Gs (5.0 mT) 2.5 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 1.0 cm

Table 8: Collisions (cracking risk) - warning
MW 10x6 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 31.33 km/h
(8.70 m/s)
0.13 J
30 mm 54.05 km/h
(15.01 m/s)
0.40 J
50 mm 69.78 km/h
(19.38 m/s)
0.66 J
100 mm 98.69 km/h
(27.41 m/s)
1.33 J

Table 9: Anti-corrosion coating durability
MW 10x6 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Pc)
MW 10x6 / N38

Parameter Value SI Unit / Description
Magnetic Flux 3 767 Mx 37.7 µWb
Pc Coefficient 0.66 High (Stable)

Table 11: Submerged application
MW 10x6 / N38

Environment Effective steel pull Effect
Air (land) 3.38 kg Standard
Water (riverbed) 3.87 kg
(+0.49 kg buoyancy gain)
+14.5%
Rust risk: This magnet has a standard nickel coating. After use in water, it must be dried and maintained immediately, otherwise it will rust!
1. Wall mount (shear)

*Warning: On a vertical wall, the magnet retains merely ~20% of its max power.

2. Efficiency vs thickness

*Thin metal sheet (e.g. 0.5mm PC case) severely limits the holding force.

3. Heat tolerance

*For N38 grade, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.66

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical specification and ecology
Chemical composition
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010012-2026
Magnet Unit Converter
Magnet pull force

Magnetic Induction

View more deals

The presented product is an extremely powerful rod magnet, composed of durable NdFeB material, which, with dimensions of Ø10x6 mm, guarantees maximum efficiency. This specific item boasts an accuracy of ±0.1mm and professional build quality, making it an excellent solution for the most demanding engineers and designers. As a cylindrical magnet with impressive force (approx. 3.38 kg), this product is in stock from our European logistics center, ensuring lightning-fast order fulfillment. Furthermore, its triple-layer Ni-Cu-Ni coating shields it against corrosion in standard operating conditions, guaranteeing an aesthetic appearance and durability for years.
It successfully proves itself in DIY projects, advanced robotics, and broadly understood industry, serving as a positioning or actuating element. Thanks to the high power of 33.12 N with a weight of only 3.53 g, this rod is indispensable in miniature devices and wherever low weight is crucial.
Since our magnets have a tolerance of ±0.1mm, the recommended way is to glue them into holes with a slightly larger diameter (e.g., 10.1 mm) using two-component epoxy glues. To ensure long-term durability in automation, specialized industrial adhesives are used, which do not react with the nickel coating and fill the gap, guaranteeing durability of the connection.
Magnets NdFeB grade N38 are strong enough for 90% of applications in modeling and machine building, where excessive miniaturization with maximum force is not required. If you need even stronger magnets in the same volume (Ø10x6), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard in continuous sale in our store.
The presented product is a neodymium magnet with precisely defined parameters: diameter 10 mm and height 6 mm. The key parameter here is the holding force amounting to approximately 3.38 kg (force ~33.12 N), which, with such defined dimensions, proves the high grade of the NdFeB material. The product has a [NiCuNi] coating, which secures it against oxidation, giving it an aesthetic, silvery shine.
This rod magnet is magnetized axially (along the height of 6 mm), which means that the N and S poles are located on the flat, circular surfaces. Such an arrangement is most desirable when connecting magnets in stacks (e.g., in filters) or when mounting in sockets at the bottom of a hole. On request, we can also produce versions magnetized through the diameter if your project requires it.

Pros as well as cons of neodymium magnets.

Pros

Apart from their consistent magnetic energy, neodymium magnets have these key benefits:
  • Their strength remains stable, and after around 10 years it drops only by ~1% (according to research),
  • Neodymium magnets are exceptionally resistant to demagnetization caused by external interference,
  • By applying a reflective coating of silver, the element acquires an professional look,
  • They are known for high magnetic induction at the operating surface, which affects their effectiveness,
  • Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the form) even at high temperatures reaching 230°C or more...
  • Thanks to modularity in forming and the ability to modify to unusual requirements,
  • Significant place in modern industrial fields – they are utilized in HDD drives, electric drive systems, diagnostic systems, also modern systems.
  • Thanks to efficiency per cm³, small magnets offer high operating force, with minimal size,

Cons

Disadvantages of neodymium magnets:
  • At very strong impacts they can crack, therefore we recommend placing them in special holders. A metal housing provides additional protection against damage and increases the magnet's durability.
  • We warn that neodymium magnets can lose their strength at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
  • They oxidize in a humid environment. For use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
  • Due to limitations in creating threads and complex forms in magnets, we propose using casing - magnetic holder.
  • Potential hazard to health – tiny shards of magnets can be dangerous, when accidentally swallowed, which is particularly important in the context of child safety. Furthermore, small elements of these products can be problematic in diagnostics medical after entering the body.
  • High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which increases costs of application in large quantities

Holding force characteristics

Maximum lifting capacity of the magnetwhat affects it?

The lifting capacity listed is a theoretical maximum value executed under standard conditions:
  • on a base made of mild steel, effectively closing the magnetic flux
  • with a cross-section no less than 10 mm
  • with an polished touching surface
  • with direct contact (without coatings)
  • under perpendicular application of breakaway force (90-degree angle)
  • at standard ambient temperature

Practical lifting capacity: influencing factors

In practice, the actual holding force depends on a number of factors, ranked from the most important:
  • Space between surfaces – every millimeter of separation (caused e.g. by veneer or unevenness) diminishes the magnet efficiency, often by half at just 0.5 mm.
  • Force direction – remember that the magnet has greatest strength perpendicularly. Under shear forces, the holding force drops drastically, often to levels of 20-30% of the nominal value.
  • Metal thickness – the thinner the sheet, the weaker the hold. Magnetic flux penetrates through instead of converting into lifting capacity.
  • Steel grade – the best choice is high-permeability steel. Cast iron may generate lower lifting capacity.
  • Surface finish – full contact is possible only on polished steel. Rough texture reduce the real contact area, reducing force.
  • Temperature – heating the magnet causes a temporary drop of force. It is worth remembering the maximum operating temperature for a given model.

Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, whereas under shearing force the lifting capacity is smaller. Moreover, even a minimal clearance between the magnet’s surface and the plate lowers the lifting capacity.

Safe handling of neodymium magnets
Nickel coating and allergies

Medical facts indicate that the nickel plating (standard magnet coating) is a strong allergen. If you have an allergy, prevent direct skin contact or select encased magnets.

Fire risk

Drilling and cutting of NdFeB material carries a risk of fire risk. Magnetic powder oxidizes rapidly with oxygen and is hard to extinguish.

Impact on smartphones

A powerful magnetic field negatively affects the functioning of compasses in phones and navigation systems. Keep magnets close to a device to prevent damaging the sensors.

Pacemakers

Life threat: Strong magnets can deactivate heart devices and defibrillators. Do not approach if you have electronic implants.

Shattering risk

Protect your eyes. Magnets can fracture upon violent connection, ejecting shards into the air. Eye protection is mandatory.

Handling guide

Before starting, read the rules. Uncontrolled attraction can break the magnet or injure your hand. Think ahead.

Crushing risk

Danger of trauma: The pulling power is so great that it can cause blood blisters, crushing, and broken bones. Use thick gloves.

This is not a toy

These products are not intended for children. Accidental ingestion of multiple magnets may result in them pinching intestinal walls, which poses a severe health hazard and necessitates immediate surgery.

Heat sensitivity

Standard neodymium magnets (grade N) undergo demagnetization when the temperature goes above 80°C. Damage is permanent.

Electronic devices

Powerful magnetic fields can destroy records on payment cards, hard drives, and storage devices. Stay away of at least 10 cm.

Caution! More info about risks in the article: Magnet Safety Guide.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98