MW 10x6 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010012
GTIN: 5906301810117
Diameter Ø [±0,1 mm]
10 mm
Height [±0,1 mm]
6 mm
Weight
3.53 g
Magnetization Direction
↑ axial
Load capacity
3.32 kg / 32.56 N
Magnetic Induction
475.73 mT
Coating
[NiCuNi] nickel
1.045 ZŁ with VAT / pcs + price for transport
0.850 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Pick up the phone and ask
+48 888 99 98 98
or contact us using
form
our website.
Force and shape of a neodymium magnet can be reviewed using our
magnetic mass calculator.
Same-day processing for orders placed before 14:00.
MW 10x6 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of epoxy to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as nickel, to preserve them from external factors and extend their lifespan. Temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (according to literature),
- Their ability to resist magnetic interference from external fields is among the best,
- By applying a bright layer of nickel, the element gains a clean look,
- They have extremely strong magnetic induction on the surface of the magnet,
- Thanks to their exceptional temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- With the option for tailored forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
- Key role in cutting-edge sectors – they serve a purpose in HDDs, electric motors, medical equipment and high-tech tools,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of magnetic elements:
- They can break when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time strengthens its overall resistance,
- They lose power at elevated temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a humid environment, especially when used outside, we recommend using sealed magnets, such as those made of non-metallic materials,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
- Health risk due to small fragments may arise, if ingested accidentally, which is crucial in the health of young users. Additionally, tiny components from these products have the potential to disrupt scanning when ingested,
- Due to the price of neodymium, their cost is above average,
Magnetic strength at its maximum – what affects it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, measured in a perfect environment, specifically:
- with mild steel, used as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a refined outer layer
- with no separation
- with vertical force applied
- under standard ambient temperature
Lifting capacity in real conditions – factors
In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 75%. In addition, even a minimal clearance {between} the magnet and the plate lowers the load capacity.
Handle Neodymium Magnets Carefully
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Neodymium magnets bounce and touch each other mutually within a radius of several to almost 10 cm from each other.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets can become demagnetized at high temperatures.
While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
It is important to maintain neodymium magnets out of reach from youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets are especially fragile, which leads to their breakage.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Exercise caution!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.