MW 10x5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010011
GTIN/EAN: 5906301810100
Diameter Ø
10 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
2.95 g
Magnetization Direction
↑ axial
Load capacity
3.19 kg / 31.28 N
Magnetic Induction
437.91 mT / 4379 Gs
Coating
[NiCuNi] Nickel
1.513 ZŁ with VAT / pcs + price for transport
1.230 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
alternatively send us a note by means of
inquiry form
the contact section.
Lifting power and form of a magnet can be analyzed with our
magnetic mass calculator.
Same-day processing for orders placed before 14:00.
Technical details - MW 10x5 / N38 - cylindrical magnet
Specification / characteristics - MW 10x5 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010011 |
| GTIN/EAN | 5906301810100 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 10 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 2.95 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 3.19 kg / 31.28 N |
| Magnetic Induction ~ ? | 437.91 mT / 4379 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering modeling of the magnet - data
The following data are the direct effect of a physical analysis. Results were calculated on models for the material Nd2Fe14B. Real-world parameters might slightly differ. Use these calculations as a supplementary guide when designing systems.
Table 1: Static pull force (force vs gap) - power drop
MW 10x5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
4376 Gs
437.6 mT
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
strong |
| 1 mm |
3547 Gs
354.7 mT
|
2.10 kg / 4.62 lbs
2095.9 g / 20.6 N
|
strong |
| 2 mm |
2743 Gs
274.3 mT
|
1.25 kg / 2.76 lbs
1252.9 g / 12.3 N
|
safe |
| 3 mm |
2068 Gs
206.8 mT
|
0.71 kg / 1.57 lbs
712.2 g / 7.0 N
|
safe |
| 5 mm |
1161 Gs
116.1 mT
|
0.22 kg / 0.50 lbs
224.7 g / 2.2 N
|
safe |
| 10 mm |
336 Gs
33.6 mT
|
0.02 kg / 0.04 lbs
18.8 g / 0.2 N
|
safe |
| 15 mm |
133 Gs
13.3 mT
|
0.00 kg / 0.01 lbs
2.9 g / 0.0 N
|
safe |
| 20 mm |
65 Gs
6.5 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
safe |
| 30 mm |
22 Gs
2.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
safe |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Slippage hold (vertical surface)
MW 10x5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 1.41 lbs
638.0 g / 6.3 N
|
| 1 mm | Stal (~0.2) |
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
| 2 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
250.0 g / 2.5 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 0.31 lbs
142.0 g / 1.4 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 10x5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.96 kg / 2.11 lbs
957.0 g / 9.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 1.41 lbs
638.0 g / 6.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 0.70 lbs
319.0 g / 3.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.60 kg / 3.52 lbs
1595.0 g / 15.6 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MW 10x5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 0.70 lbs
319.0 g / 3.1 N
|
| 1 mm |
|
0.80 kg / 1.76 lbs
797.5 g / 7.8 N
|
| 2 mm |
|
1.60 kg / 3.52 lbs
1595.0 g / 15.6 N
|
| 3 mm |
|
2.39 kg / 5.27 lbs
2392.5 g / 23.5 N
|
| 5 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
| 10 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
| 11 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
| 12 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
Table 5: Working in heat (stability) - power drop
MW 10x5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
OK |
| 40 °C | -2.2% |
3.12 kg / 6.88 lbs
3119.8 g / 30.6 N
|
OK |
| 60 °C | -4.4% |
3.05 kg / 6.72 lbs
3049.6 g / 29.9 N
|
|
| 80 °C | -6.6% |
2.98 kg / 6.57 lbs
2979.5 g / 29.2 N
|
|
| 100 °C | -28.8% |
2.27 kg / 5.01 lbs
2271.3 g / 22.3 N
|
Table 6: Magnet-Magnet interaction (repulsion) - forces in the system
MW 10x5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.27 kg / 20.44 lbs
5 534 Gs
|
1.39 kg / 3.07 lbs
1391 g / 13.6 N
|
N/A |
| 1 mm |
7.63 kg / 16.83 lbs
7 941 Gs
|
1.15 kg / 2.52 lbs
1145 g / 11.2 N
|
6.87 kg / 15.15 lbs
~0 Gs
|
| 2 mm |
6.09 kg / 13.43 lbs
7 094 Gs
|
0.91 kg / 2.01 lbs
914 g / 9.0 N
|
5.48 kg / 12.09 lbs
~0 Gs
|
| 3 mm |
4.75 kg / 10.48 lbs
6 265 Gs
|
0.71 kg / 1.57 lbs
713 g / 7.0 N
|
4.28 kg / 9.43 lbs
~0 Gs
|
| 5 mm |
2.76 kg / 6.08 lbs
4 772 Gs
|
0.41 kg / 0.91 lbs
413 g / 4.1 N
|
2.48 kg / 5.47 lbs
~0 Gs
|
| 10 mm |
0.65 kg / 1.44 lbs
2 323 Gs
|
0.10 kg / 0.22 lbs
98 g / 1.0 N
|
0.59 kg / 1.30 lbs
~0 Gs
|
| 20 mm |
0.05 kg / 0.12 lbs
673 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
72 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
44 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
20 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (electronics) - warnings
MW 10x5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 3.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 2.5 cm |
| Car key | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Collisions (kinetic energy) - warning
MW 10x5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
33.29 km/h
(9.25 m/s)
|
0.13 J | |
| 30 mm |
57.44 km/h
(15.96 m/s)
|
0.38 J | |
| 50 mm |
74.16 km/h
(20.60 m/s)
|
0.63 J | |
| 100 mm |
104.87 km/h
(29.13 m/s)
|
1.25 J |
Table 9: Anti-corrosion coating durability
MW 10x5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MW 10x5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 3 489 Mx | 34.9 µWb |
| Pc Coefficient | 0.59 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MW 10x5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 3.19 kg | Standard |
| Water (riverbed) |
3.65 kg
(+0.46 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical surface, the magnet retains just approx. 20-30% of its nominal pull.
2. Steel saturation
*Thin steel (e.g. computer case) severely reduces the holding force.
3. Heat tolerance
*For N38 material, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.59
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other deals
Pros and cons of rare earth magnets.
Advantages
- They have stable power, and over more than 10 years their attraction force decreases symbolically – ~1% (according to theory),
- They maintain their magnetic properties even under strong external field,
- The use of an elegant coating of noble metals (nickel, gold, silver) causes the element to look better,
- Neodymium magnets create maximum magnetic induction on a small area, which ensures high operational effectiveness,
- Thanks to resistance to high temperature, they can operate (depending on the shape) even at temperatures up to 230°C and higher...
- Thanks to modularity in constructing and the ability to customize to specific needs,
- Significant place in high-tech industry – they find application in HDD drives, motor assemblies, medical devices, and industrial machines.
- Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications
Weaknesses
- To avoid cracks under impact, we suggest using special steel housings. Such a solution protects the magnet and simultaneously improves its durability.
- Neodymium magnets lose their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
- They rust in a humid environment. For use outdoors we advise using waterproof magnets e.g. in rubber, plastic
- We suggest casing - magnetic holder, due to difficulties in producing threads inside the magnet and complicated forms.
- Potential hazard related to microscopic parts of magnets can be dangerous, if swallowed, which gains importance in the context of child health protection. Additionally, tiny parts of these devices are able to be problematic in diagnostics medical after entering the body.
- Due to expensive raw materials, their price is relatively high,
Lifting parameters
Maximum lifting force for a neodymium magnet – what affects it?
- on a block made of mild steel, perfectly concentrating the magnetic field
- whose transverse dimension equals approx. 10 mm
- characterized by even structure
- without the slightest air gap between the magnet and steel
- under vertical application of breakaway force (90-degree angle)
- at temperature approx. 20 degrees Celsius
Lifting capacity in real conditions – factors
- Distance (betwixt the magnet and the metal), since even a very small distance (e.g. 0.5 mm) can cause a decrease in force by up to 50% (this also applies to varnish, rust or debris).
- Angle of force application – maximum parameter is reached only during perpendicular pulling. The force required to slide of the magnet along the surface is usually several times lower (approx. 1/5 of the lifting capacity).
- Element thickness – to utilize 100% power, the steel must be adequately massive. Paper-thin metal limits the attraction force (the magnet "punches through" it).
- Steel grade – the best choice is pure iron steel. Hardened steels may have worse magnetic properties.
- Smoothness – ideal contact is obtained only on smooth steel. Rough texture reduce the real contact area, reducing force.
- Heat – neodymium magnets have a negative temperature coefficient. When it is hot they are weaker, and in frost gain strength (up to a certain limit).
Lifting capacity testing was carried out on a smooth plate of optimal thickness, under a perpendicular pulling force, however under shearing force the lifting capacity is smaller. Moreover, even a slight gap between the magnet’s surface and the plate reduces the lifting capacity.
Safe handling of neodymium magnets
Thermal limits
Do not overheat. NdFeB magnets are susceptible to temperature. If you require resistance above 80°C, ask us about special high-temperature series (H, SH, UH).
Protective goggles
Protect your eyes. Magnets can explode upon uncontrolled impact, ejecting sharp fragments into the air. Eye protection is mandatory.
Hand protection
Pinching hazard: The pulling power is so great that it can cause hematomas, pinching, and broken bones. Use thick gloves.
Choking Hazard
Only for adults. Small elements pose a choking risk, causing severe trauma. Keep away from children and animals.
Danger to pacemakers
Warning for patients: Strong magnetic fields disrupt electronics. Keep minimum 30 cm distance or request help to handle the magnets.
Machining danger
Machining of NdFeB material carries a risk of fire hazard. Magnetic powder oxidizes rapidly with oxygen and is difficult to extinguish.
Nickel allergy
Studies show that the nickel plating (standard magnet coating) is a common allergen. For allergy sufferers, avoid touching magnets with bare hands or select versions in plastic housing.
Protect data
Intense magnetic fields can erase data on payment cards, HDDs, and storage devices. Maintain a gap of min. 10 cm.
Caution required
Before starting, check safety instructions. Sudden snapping can break the magnet or injure your hand. Be predictive.
Compass and GPS
An intense magnetic field negatively affects the operation of compasses in smartphones and navigation systems. Do not bring magnets close to a device to avoid breaking the sensors.
