MW 10x5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010011
GTIN/EAN: 5906301810100
Diameter Ø
10 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
2.95 g
Magnetization Direction
↑ axial
Load capacity
3.19 kg / 31.28 N
Magnetic Induction
437.91 mT / 4379 Gs
Coating
[NiCuNi] Nickel
1.513 ZŁ with VAT / pcs + price for transport
1.230 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
or get in touch through
form
our website.
Weight and appearance of magnetic components can be analyzed on our
modular calculator.
Same-day processing for orders placed before 14:00.
Product card - MW 10x5 / N38 - cylindrical magnet
Specification / characteristics - MW 10x5 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010011 |
| GTIN/EAN | 5906301810100 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 10 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 2.95 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 3.19 kg / 31.28 N |
| Magnetic Induction ~ ? | 437.91 mT / 4379 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical modeling of the product - technical parameters
Presented data represent the result of a engineering simulation. Results are based on models for the material Nd2Fe14B. Actual parameters might slightly deviate from the simulation results. Please consider these calculations as a preliminary roadmap when designing systems.
Table 1: Static pull force (force vs gap) - interaction chart
MW 10x5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
4376 Gs
437.6 mT
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
warning |
| 1 mm |
3547 Gs
354.7 mT
|
2.10 kg / 4.62 lbs
2095.9 g / 20.6 N
|
warning |
| 2 mm |
2743 Gs
274.3 mT
|
1.25 kg / 2.76 lbs
1252.9 g / 12.3 N
|
weak grip |
| 3 mm |
2068 Gs
206.8 mT
|
0.71 kg / 1.57 lbs
712.2 g / 7.0 N
|
weak grip |
| 5 mm |
1161 Gs
116.1 mT
|
0.22 kg / 0.50 lbs
224.7 g / 2.2 N
|
weak grip |
| 10 mm |
336 Gs
33.6 mT
|
0.02 kg / 0.04 lbs
18.8 g / 0.2 N
|
weak grip |
| 15 mm |
133 Gs
13.3 mT
|
0.00 kg / 0.01 lbs
2.9 g / 0.0 N
|
weak grip |
| 20 mm |
65 Gs
6.5 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
weak grip |
| 30 mm |
22 Gs
2.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
weak grip |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Vertical force (vertical surface)
MW 10x5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 1.41 lbs
638.0 g / 6.3 N
|
| 1 mm | Stal (~0.2) |
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
| 2 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
250.0 g / 2.5 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 0.31 lbs
142.0 g / 1.4 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MW 10x5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.96 kg / 2.11 lbs
957.0 g / 9.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 1.41 lbs
638.0 g / 6.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 0.70 lbs
319.0 g / 3.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.60 kg / 3.52 lbs
1595.0 g / 15.6 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MW 10x5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 0.70 lbs
319.0 g / 3.1 N
|
| 1 mm |
|
0.80 kg / 1.76 lbs
797.5 g / 7.8 N
|
| 2 mm |
|
1.60 kg / 3.52 lbs
1595.0 g / 15.6 N
|
| 3 mm |
|
2.39 kg / 5.27 lbs
2392.5 g / 23.5 N
|
| 5 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
| 10 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
| 11 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
| 12 mm |
|
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
Table 5: Thermal resistance (material behavior) - power drop
MW 10x5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.19 kg / 7.03 lbs
3190.0 g / 31.3 N
|
OK |
| 40 °C | -2.2% |
3.12 kg / 6.88 lbs
3119.8 g / 30.6 N
|
OK |
| 60 °C | -4.4% |
3.05 kg / 6.72 lbs
3049.6 g / 29.9 N
|
|
| 80 °C | -6.6% |
2.98 kg / 6.57 lbs
2979.5 g / 29.2 N
|
|
| 100 °C | -28.8% |
2.27 kg / 5.01 lbs
2271.3 g / 22.3 N
|
Table 6: Two magnets (repulsion) - forces in the system
MW 10x5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.27 kg / 20.44 lbs
5 534 Gs
|
1.39 kg / 3.07 lbs
1391 g / 13.6 N
|
N/A |
| 1 mm |
7.63 kg / 16.83 lbs
7 941 Gs
|
1.15 kg / 2.52 lbs
1145 g / 11.2 N
|
6.87 kg / 15.15 lbs
~0 Gs
|
| 2 mm |
6.09 kg / 13.43 lbs
7 094 Gs
|
0.91 kg / 2.01 lbs
914 g / 9.0 N
|
5.48 kg / 12.09 lbs
~0 Gs
|
| 3 mm |
4.75 kg / 10.48 lbs
6 265 Gs
|
0.71 kg / 1.57 lbs
713 g / 7.0 N
|
4.28 kg / 9.43 lbs
~0 Gs
|
| 5 mm |
2.76 kg / 6.08 lbs
4 772 Gs
|
0.41 kg / 0.91 lbs
413 g / 4.1 N
|
2.48 kg / 5.47 lbs
~0 Gs
|
| 10 mm |
0.65 kg / 1.44 lbs
2 323 Gs
|
0.10 kg / 0.22 lbs
98 g / 1.0 N
|
0.59 kg / 1.30 lbs
~0 Gs
|
| 20 mm |
0.05 kg / 0.12 lbs
673 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
72 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
44 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
20 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (implants) - warnings
MW 10x5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 3.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 2.5 cm |
| Car key | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Impact energy (cracking risk) - warning
MW 10x5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
33.29 km/h
(9.25 m/s)
|
0.13 J | |
| 30 mm |
57.44 km/h
(15.96 m/s)
|
0.38 J | |
| 50 mm |
74.16 km/h
(20.60 m/s)
|
0.63 J | |
| 100 mm |
104.87 km/h
(29.13 m/s)
|
1.25 J |
Table 9: Corrosion resistance
MW 10x5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MW 10x5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 3 489 Mx | 34.9 µWb |
| Pc Coefficient | 0.59 | Low (Flat) |
Table 11: Submerged application
MW 10x5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 3.19 kg | Standard |
| Water (riverbed) |
3.65 kg
(+0.46 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Caution: On a vertical wall, the magnet holds only a fraction of its nominal pull.
2. Plate thickness effect
*Thin metal sheet (e.g. computer case) drastically weakens the holding force.
3. Temperature resistance
*For N38 material, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.59
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out more deals
Pros as well as cons of rare earth magnets.
Advantages
- They do not lose strength, even over nearly ten years – the decrease in strength is only ~1% (based on measurements),
- They do not lose their magnetic properties even under external field action,
- The use of an shiny layer of noble metals (nickel, gold, silver) causes the element to have aesthetics,
- Neodymium magnets ensure maximum magnetic induction on a their surface, which allows for strong attraction,
- Neodymium magnets are characterized by very high magnetic induction on the magnet surface and can function (depending on the shape) even at a temperature of 230°C or more...
- Possibility of individual forming as well as optimizing to individual requirements,
- Key role in advanced technology sectors – they serve a role in magnetic memories, motor assemblies, precision medical tools, and other advanced devices.
- Thanks to efficiency per cm³, small magnets offer high operating force, occupying minimum space,
Weaknesses
- Brittleness is one of their disadvantages. Upon intense impact they can fracture. We advise keeping them in a steel housing, which not only secures them against impacts but also raises their durability
- We warn that neodymium magnets can lose their strength at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
- When exposed to humidity, magnets usually rust. For applications outside, it is recommended to use protective magnets, such as those in rubber or plastics, which prevent oxidation and corrosion.
- We recommend cover - magnetic mechanism, due to difficulties in producing nuts inside the magnet and complex forms.
- Potential hazard resulting from small fragments of magnets can be dangerous, in case of ingestion, which gains importance in the context of child health protection. It is also worth noting that small elements of these products are able to be problematic in diagnostics medical in case of swallowing.
- High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which hinders application in large quantities
Holding force characteristics
Detachment force of the magnet in optimal conditions – what contributes to it?
- with the contact of a sheet made of low-carbon steel, ensuring full magnetic saturation
- whose thickness equals approx. 10 mm
- with an polished touching surface
- without the slightest air gap between the magnet and steel
- during detachment in a direction vertical to the mounting surface
- at room temperature
Lifting capacity in practice – influencing factors
- Space between magnet and steel – every millimeter of distance (caused e.g. by varnish or dirt) drastically reduces the magnet efficiency, often by half at just 0.5 mm.
- Force direction – declared lifting capacity refers to detachment vertically. When applying parallel force, the magnet exhibits much less (typically approx. 20-30% of maximum force).
- Substrate thickness – for full efficiency, the steel must be adequately massive. Thin sheet restricts the lifting capacity (the magnet "punches through" it).
- Plate material – low-carbon steel gives the best results. Alloy admixtures reduce magnetic properties and holding force.
- Plate texture – smooth surfaces ensure maximum contact, which improves field saturation. Uneven metal reduce efficiency.
- Operating temperature – NdFeB sinters have a negative temperature coefficient. When it is hot they lose power, and at low temperatures gain strength (up to a certain limit).
Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the holding force is lower. Moreover, even a slight gap between the magnet and the plate decreases the lifting capacity.
Precautions when working with neodymium magnets
Beware of splinters
Beware of splinters. Magnets can fracture upon violent connection, ejecting sharp fragments into the air. Wear goggles.
ICD Warning
People with a ICD have to maintain an large gap from magnets. The magnetism can interfere with the functioning of the implant.
Flammability
Powder produced during cutting of magnets is self-igniting. Do not drill into magnets unless you are an expert.
Nickel coating and allergies
Nickel alert: The Ni-Cu-Ni coating contains nickel. If skin irritation appears, cease handling magnets and use protective gear.
Swallowing risk
Product intended for adults. Small elements can be swallowed, leading to serious injuries. Keep out of reach of children and animals.
Hand protection
Large magnets can break fingers instantly. Never place your hand betwixt two attracting surfaces.
Respect the power
Handle magnets with awareness. Their powerful strength can shock even experienced users. Plan your moves and do not underestimate their force.
Thermal limits
Monitor thermal conditions. Heating the magnet above 80 degrees Celsius will ruin its magnetic structure and strength.
Keep away from electronics
Navigation devices and mobile phones are extremely susceptible to magnetism. Close proximity with a strong magnet can decalibrate the sensors in your phone.
Magnetic media
Intense magnetic fields can erase data on payment cards, hard drives, and other magnetic media. Keep a distance of min. 10 cm.
