tel: +48 22 499 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our offer. Practically all "magnets" on our website are available for immediate purchase (see the list). Check out the magnet price list for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to purchase strong magnet? Magnetic holders in airtight, solid steel enclosure are perfect for use in challenging climate conditions, including during rain and snow see more...

magnets with holders

Holders with magnets can be applied to enhance production processes, exploring underwater areas, or locating meteors made of ore see more...

We promise to ship ordered magnets if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping in 2 days! Bestseller

MW 10x5 / N38 - neodymium magnet

cylindrical magnet

catalog number 010011

GTIN: 5906301810100

5.0

diameter Ø

10 mm [±0,1 mm]

height

5 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

2.76 kg / 27.07 N

magnetic induction ~

437.91 mT / 4,379 Gs

max. temperature

≤ 80 °C

1.51 gross price (including VAT) / pcs +

1.23 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
1.23 ZŁ
1.51 ZŁ
price from 800 pcs
1.08 ZŁ
1.33 ZŁ
price from 1600 pcs
1.05 ZŁ
1.29 ZŁ

Don't know what to buy?

Call us tel: +48 22 499 98 98 or contact us through form on our website. You can check the power and the shape of neodymium magnet in our magnetic calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 10x5 / N38 ↑ axial

Characteristics: cylindrical magnet 10x5 / N38 ↑ axial
Properties
Values
catalog number
010011
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
10 mm [±0,1 mm]
height
5 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
2.76 kg / 27.07 N
magnetic induction ~ ?
437.91 mT / 4,379 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
2.95 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets min. MW 10x5 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their extremely powerful magnetic properties, which exceed traditional iron magnets. Thanks to their power, they are frequently used in devices that need strong adhesion. The standard temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet designated MW 10x5 / N38 and a magnetic strength 2.76 kg weighs only 2.95 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of gold-nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the website for the current information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very useful in various applications, they can also pose certain dangers. Due to their significant magnetic power, they can pull metallic objects with great force, which can lead to damaging skin or other surfaces, especially hands. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the very strong magnets on the market. They are produced through a complicated sintering process, which involves melting specific alloys of neodymium with other metals and then shaping and thermal processing. Their unmatched magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as nickel, to shield them from environmental factors and prolong their durability. High temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic properties.

Recommended articles for purchase

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are extremely resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in many variants of shapes and sizes, which amplifies their universality in usage.
  • Key role in the industry of new technologies – are utilized in hard drives, electric drive mechanisms, medical equipment and other advanced devices.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Health risk associated with microscopic parts of magnets are risky, in case of ingestion, which is particularly important in the context of child safety. It's also worth noting that tiny parts of these products are able to hinder the diagnostic process after entering the body.

Precautions

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets may crack or alternatively crumble with uncontrolled joining to each other. You can't move them to each other. At a distance less than 10 cm you should hold them extremely firmly.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

 It is important to keep neodymium magnets away from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Magnets made of neodymium are especially delicate, which leads to shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98