UMH 60x15x69 [M8] / N38 - magnetic holder with hook
magnetic holder with hook
Catalog no 310431
GTIN: 5906301814603
Diameter Ø [±0,1 mm]
60 mm
Height [±0,1 mm]
69 mm
Height [±0,1 mm]
15 mm
Weight
300 g
Magnetization Direction
↑ axial
Load capacity
112 kg / 1098.34 N
Coating
[NiCuNi] nickel
143.91 ZŁ with VAT / pcs + price for transport
117.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Call us
+48 888 99 98 98
otherwise let us know by means of
contact form
the contact form page.
Lifting power as well as appearance of a magnet can be tested using our
magnetic calculator.
Same-day shipping for orders placed before 14:00.
UMH 60x15x69 [M8] / N38 - magnetic holder with hook
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their notable power, neodymium magnets have these key benefits:
- They retain their magnetic properties for nearly 10 years – the drop is just ~1% (according to analyses),
- Their ability to resist magnetic interference from external fields is impressive,
- By applying a bright layer of silver, the element gains a modern look,
- They have very high magnetic induction on the surface of the magnet,
- With the right combination of materials, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
- The ability for custom shaping and adjustment to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
- Important function in new technology industries – they are utilized in data storage devices, electric drives, medical equipment along with high-tech tools,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to mechanical hits, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and increases its overall durability,
- They lose field intensity at increased temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a humid environment, especially when used outside, we recommend using sealed magnets, such as those made of plastic,
- Limited ability to create internal holes in the magnet – the use of a housing is recommended,
- Potential hazard linked to microscopic shards may arise, when consumed by mistake, which is notable in the context of child safety. Furthermore, miniature parts from these assemblies might hinder health screening if inside the body,
- In cases of tight budgets, neodymium magnet cost is a challenge,
Breakaway strength of the magnet in ideal conditions – what it depends on?
The given strength of the magnet represents the optimal strength, assessed in ideal conditions, specifically:
- with the use of low-carbon steel plate acting as a magnetic yoke
- with a thickness of minimum 10 mm
- with a refined outer layer
- with zero air gap
- in a perpendicular direction of force
- under standard ambient temperature
Determinants of lifting force in real conditions
The lifting capacity of a magnet is determined by in practice key elements, according to their importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of suitable thickness, under a perpendicular pulling force, whereas under parallel forces the holding force is lower. Moreover, even a minimal clearance {between} the magnet and the plate reduces the load capacity.
Exercise Caution with Neodymium Magnets
Do not give neodymium magnets to youngest children.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Magnets made of neodymium are known for being fragile, which can cause them to shatter.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets can become demagnetized at high temperatures.
Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
If have a finger between or alternatively on the path of attracting magnets, there may be a large cut or even a fracture.
Safety precautions!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
