UMH 60x15x69 [M8] / N38 - magnetic holder with hook
magnetic holder with hook
Catalog no 310431
GTIN: 5906301814603
Diameter Ø [±0,1 mm]
60 mm
Height [±0,1 mm]
69 mm
Height [±0,1 mm]
15 mm
Weight
300 g
Magnetization Direction
↑ axial
Load capacity
112 kg / 1098.34 N
Coating
[NiCuNi] nickel
143.91 ZŁ with VAT / pcs + price for transport
117.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Call us
+48 888 99 98 98
if you prefer let us know via
our online form
through our site.
Strength as well as structure of a magnet can be checked on our
modular calculator.
Same-day processing for orders placed before 14:00.
UMH 60x15x69 [M8] / N38 - magnetic holder with hook
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their immense pulling force, neodymium magnets offer the following advantages:
- They retain their attractive force for almost 10 years – the loss is just ~1% (in theory),
- They show exceptional resistance to demagnetization from external magnetic fields,
- The use of a polished silver surface provides a smooth finish,
- Magnetic induction on the surface of these magnets is very strong,
- With the right combination of compounds, they reach significant thermal stability, enabling operation at or above 230°C (depending on the structure),
- Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which increases their application range,
- Wide application in modern technologies – they serve a purpose in hard drives, rotating machines, healthcare devices along with high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them ideal in miniature devices
Disadvantages of rare earth magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to external force, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and reinforces its overall strength,
- Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to humidity can degrade. Therefore, for outdoor applications, it's best to use waterproof types made of rubber,
- Limited ability to create complex details in the magnet – the use of a external casing is recommended,
- Health risk from tiny pieces may arise, if ingested accidentally, which is significant in the protection of children. It should also be noted that tiny components from these products may hinder health screening once in the system,
- In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,
Best holding force of the magnet in ideal parameters – what contributes to it?
The given strength of the magnet means the optimal strength, determined under optimal conditions, that is:
- with mild steel, serving as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a polished side
- in conditions of no clearance
- under perpendicular detachment force
- under standard ambient temperature
Lifting capacity in real conditions – factors
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, whereas under parallel forces the load capacity is reduced by as much as 5 times. Moreover, even a small distance {between} the magnet’s surface and the plate decreases the holding force.
Caution with Neodymium Magnets
Magnets made of neodymium are highly fragile, they easily fall apart as well as can crumble.
Neodymium magnets are fragile and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be near people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
It is essential to maintain neodymium magnets out of reach from youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Avoid bringing neodymium magnets close to a phone or GPS.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Neodymium magnets bounce and also touch each other mutually within a distance of several to almost 10 cm from each other.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Safety precautions!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
