UMH 60x15x69 [M8] / N38 - magnetic holder with hook
magnetic holder with hook
Catalog no 310431
GTIN: 5906301814603
Diameter Ø [±0,1 mm]
60 mm
Height [±0,1 mm]
69 mm
Height [±0,1 mm]
15 mm
Weight
300 g
Magnetization Direction
↑ axial
Load capacity
112 kg / 1098.34 N
Coating
[NiCuNi] nickel
143.91 ZŁ with VAT / pcs + price for transport
117.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Give us a call
+48 888 99 98 98
alternatively let us know through
request form
the contact page.
Specifications along with appearance of a magnet can be calculated with our
online calculation tool.
Orders placed before 14:00 will be shipped the same business day.
UMH 60x15x69 [M8] / N38 - magnetic holder with hook
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They retain their magnetic properties for around 10 years – the loss is just ~1% (in theory),
- They are highly resistant to demagnetization caused by external magnetic fields,
- Because of the lustrous layer of nickel, the component looks visually appealing,
- They possess significant magnetic force measurable at the magnet’s surface,
- Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which expands their functional possibilities,
- Wide application in new technology industries – they find application in data storage devices, electric drives, healthcare devices or even technologically developed systems,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage while also enhances its overall resistance,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a moist environment – during outdoor use, we recommend using waterproof magnets, such as those made of non-metallic materials,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing complex structures directly in the magnet,
- Potential hazard related to magnet particles may arise, in case of ingestion, which is crucial in the protection of children. It should also be noted that small elements from these devices can hinder health screening after being swallowed,
- Due to a complex production process, their cost is above average,
Highest magnetic holding force – what contributes to it?
The given holding capacity of the magnet means the highest holding force, calculated in the best circumstances, specifically:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- in conditions of no clearance
- under perpendicular detachment force
- at room temperature
Impact of factors on magnetic holding capacity in practice
Practical lifting force is dependent on factors, by priority:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under a perpendicular pulling force, whereas under attempts to slide the magnet the load capacity is reduced by as much as 75%. Moreover, even a small distance {between} the magnet and the plate reduces the holding force.
Caution with Neodymium Magnets
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets should not be near people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, can even cut off a finger or alternatively there can be a significant pressure or even a fracture.
Neodymium magnets can demagnetize at high temperatures.
Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Magnets are not toys, youngest should not play with them.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnetic are especially delicate, which leads to damage.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can shock you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.
Exercise caution!
So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are very strong neodymium magnets?.