tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. Practically all "neodymium magnets" in our store are available for immediate delivery (see the list). Check out the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F400 GOLD

Where to purchase powerful magnet? Magnetic holders in airtight, solid enclosure are perfect for use in variable and difficult climate conditions, including in the rain and snow check...

magnetic holders

Holders with magnets can be used to facilitate manufacturing, underwater discoveries, or locating meteorites made of ore read...

We promise to ship ordered magnets on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 10x3 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010008

GTIN: 5906301810070

5

Diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

3 mm

Weight

1.77 g

Magnetization Direction

↑ axial

Load capacity

1.66 kg / 16.28 N

Magnetic Induction

318.70 mT

Coating

[NiCuNi] nickel

0.87 with VAT / pcs + price for transport

0.71 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.71 ZŁ
0.87 ZŁ
price from 1360 pcs
0.64 ZŁ
0.79 ZŁ
price from 2720 pcs
0.62 ZŁ
0.77 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MW 10x3 / N38 - cylindrical magnet

Specification/characteristics MW 10x3 / N38 - cylindrical magnet
properties
values
Cat. no.
010008
GTIN
5906301810070
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
10 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
1.77 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.66 kg / 16.28 N
Magnetic Induction ~ ?
318.70 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 10x3 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which outperform traditional iron magnets. Because of their strength, they are often used in products that need strong adhesion. The typical temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature increases with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is also very popular among neodymium magnets. The magnet with the designation MW 10x3 / N38 and a magnetic lifting capacity of 1.66 kg has a weight of only 1.77 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of epoxy to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the website for the latest information as well as promotions, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are very useful in many applications, they can also pose certain risk. Because of their significant magnetic power, they can pull metallic objects with uncontrolled force, which can lead to damaging skin or other surfaces, especially fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the very strong magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with additional metals and then forming and thermal processing. Their unmatched magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as epoxy, to protect them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can result in a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
A cylindrical neodymium magnet of class N52 and N50 is a powerful and strong magnetic product with the shape of a cylinder, that offers strong holding power and versatile application. Very good price, fast shipping, ruggedness and versatility.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They retain their magnetic properties for nearly ten years – the loss is just ~1% (according to analyses),
  • They are very resistant to demagnetization caused by external field interference,
  • The use of a mirror-like silver surface provides a refined finish,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • The ability for precise shaping as well as adjustment to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
  • Important function in cutting-edge sectors – they serve a purpose in computer drives, electric motors, diagnostic apparatus and high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them ideal in compact constructions

Disadvantages of magnetic elements:

  • They can break when subjected to a sudden impact. If the magnets are exposed to external force, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and increases its overall durability,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to humidity can corrode. Therefore, for outdoor applications, we suggest waterproof types made of non-metallic composites,
  • Limited ability to create internal holes in the magnet – the use of a housing is recommended,
  • Safety concern linked to microscopic shards may arise, when consumed by mistake, which is important in the family environments. Moreover, tiny components from these magnets might complicate medical imaging if inside the body,
  • In cases of mass production, neodymium magnet cost is a challenge,

Caution with Neodymium Magnets

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnetic are highly susceptible to damage, leading to shattering.

Neodymium magnets are extremely fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

  Do not give neodymium magnets to youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets will jump and also contact together within a radius of several to almost 10 cm from each other.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Exercise caution!

To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98