e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnetic Nd2Fe14B - our offer. All "neodymium magnets" in our store are in stock for immediate purchase (see the list). See the magnet pricing for more details see the magnet price list

Magnets for searching F200 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in airtight, solid steel casing are ideally suited for use in difficult climate conditions, including during rain and snow read...

magnets with holders

Magnetic holders can be used to enhance manufacturing, exploring underwater areas, or finding meteors from gold check...

We promise to ship your order on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 10x3 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010008

GTIN: 5906301810070

5

Diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

3 mm

Weight

1.77 g

Magnetization Direction

↑ axial

Load capacity

1.66 kg / 16.28 N

Magnetic Induction

318.70 mT

Coating

[NiCuNi] nickel

0.726 with VAT / pcs + price for transport

0.590 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.590 ZŁ
0.726 ZŁ
price from 1360 pcs
0.531 ZŁ
0.653 ZŁ
price from 2720 pcs
0.519 ZŁ
0.639 ZŁ

Hunting for a discount?

Contact us by phone +48 888 99 98 98 or contact us via inquiry form the contact form page.
Strength as well as shape of magnets can be verified on our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

MW 10x3 / N38 - cylindrical magnet

Specification/characteristics MW 10x3 / N38 - cylindrical magnet
properties
values
Cat. no.
010008
GTIN
5906301810070
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
10 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
1.77 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.66 kg / 16.28 N
Magnetic Induction ~ ?
318.70 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 10x3 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their extremely powerful magnetic properties, which exceed ordinary iron magnets. Thanks to their power, they are frequently employed in products that need strong adhesion. The typical temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is also very popular among neodymium magnets. The magnet with the designation MW 10x3 / N38 with a magnetic strength 1.66 kg weighs only 1.77 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of epoxy to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to check the site for the current information as well as promotions, and before visiting, please call.
Although, cylindrical neodymium magnets are practical in various applications, they can also constitute certain dangers. Because of their strong magnetic power, they can attract metallic objects with uncontrolled force, which can lead to damaging skin and other surfaces, especially fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin protective layer. In short, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strong magnets on the market. They are produced through a complicated sintering process, which involves melting specific alloys of neodymium with additional metals and then shaping and heat treating. Their powerful magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as epoxy, to protect them from environmental factors and prolong their durability. Temperatures exceeding 130°C can result in a loss of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.
A cylindrical neodymium magnet N50 and N52 is a strong and powerful magnetic product shaped like a cylinder, that offers strong holding power and versatile application. Very good price, availability, durability and universal usability.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They do not lose their strength nearly ten years – the decrease of lifting capacity is only ~1% (based on measurements),
  • Their ability to resist magnetic interference from external fields is notable,
  • Because of the lustrous layer of nickel, the component looks visually appealing,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which broadens their functional possibilities,
  • Important function in new technology industries – they serve a purpose in HDDs, electromechanical systems, clinical machines or even other advanced devices,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,

Disadvantages of rare earth magnets:

  • They can break when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and strengthens its overall strength,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a damp environment – during outdoor use, we recommend using sealed magnets, such as those made of non-metallic materials,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
  • Possible threat related to magnet particles may arise, in case of ingestion, which is notable in the family environments. Additionally, miniature parts from these products have the potential to complicate medical imaging after being swallowed,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Magnetic strength at its maximum – what contributes to it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, calculated in the best circumstances, namely:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with zero air gap
  • under perpendicular detachment force
  • in normal thermal conditions

Impact of factors on magnetic holding capacity in practice

Practical lifting force is determined by elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured by applying a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, whereas under attempts to slide the magnet the holding force is lower. In addition, even a small distance {between} the magnet’s surface and the plate reduces the load capacity.

Safety Precautions

 It is important to keep neodymium magnets out of reach from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

In the situation of holding a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are the strongest magnets ever created, and their power can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnetic are especially fragile, resulting in damage.

Neodymium magnets are characterized by considerable fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Exercise caution!

So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98