MW 10x3 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010008
GTIN: 5906301810070
Diameter Ø [±0,1 mm]
10 mm
Height [±0,1 mm]
3 mm
Weight
1.77 g
Magnetization Direction
↑ axial
Load capacity
1.66 kg / 16.28 N
Magnetic Induction
318.70 mT
Coating
[NiCuNi] nickel
0.726 ZŁ with VAT / pcs + price for transport
0.590 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Call us now
+48 888 99 98 98
if you prefer contact us via
our online form
the contact form page.
Strength along with appearance of a magnet can be reviewed on our
magnetic calculator.
Same-day processing for orders placed before 14:00.
MW 10x3 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of silver to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as epoxy, to preserve them from external factors and extend their lifespan. High temperatures exceeding 130°C can result in a reduction of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their notable magnetic energy, neodymium magnets have these key benefits:
- Their magnetic field is maintained, and after approximately 10 years, it drops only by ~1% (theoretically),
- They show superior resistance to demagnetization from outside magnetic sources,
- Because of the lustrous layer of nickel, the component looks visually appealing,
- They have extremely strong magnetic induction on the surface of the magnet,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for accurate shaping or adaptation to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
- Wide application in cutting-edge sectors – they are used in hard drives, electric motors, healthcare devices along with technologically developed systems,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of neodymium magnets:
- They are prone to breaking when subjected to a strong impact. If the magnets are exposed to shocks, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage while also strengthens its overall robustness,
- They lose magnetic force at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of synthetic coating for outdoor use,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is not feasible,
- Possible threat related to magnet particles may arise, especially if swallowed, which is notable in the context of child safety. It should also be noted that miniature parts from these assemblies might disrupt scanning after being swallowed,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications
Maximum lifting force for a neodymium magnet – what affects it?
The given lifting capacity of the magnet represents the maximum lifting force, determined in the best circumstances, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a polished side
- in conditions of no clearance
- in a perpendicular direction of force
- under standard ambient temperature
Determinants of practical lifting force of a magnet
The lifting capacity of a magnet is influenced by in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under parallel forces the holding force is lower. In addition, even a small distance {between} the magnet and the plate reduces the load capacity.
Handle with Care: Neodymium Magnets
Magnets made of neodymium are noted for their fragility, which can cause them to become damaged.
Magnets made of neodymium are highly fragile, and by joining them in an uncontrolled manner, they will crack. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets are not toys, youngest should not play with them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can demagnetize at high temperatures.
Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
If you have a finger between or on the path of attracting magnets, there may be a severe cut or even a fracture.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Warning!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.