e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnetic Nd2Fe14B - our offer. All magnesy in our store are available for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnets for searching F400 GOLD

Where to buy very strong magnet? Magnet holders in airtight, solid steel casing are excellent for use in difficult, demanding weather, including during rain and snow more...

magnets with holders

Magnetic holders can be used to improve production, underwater exploration, or searching for meteorites from gold see more...

Enjoy shipping of your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping in 3 days! Bestseller

MW 10x3 / N38 - neodymium magnet

cylindrical magnet

catalog number 010008

GTIN: 5906301810070

5.0

diameter Ø

10 mm [±0,1 mm]

height

3 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

1.66 kg / 16.28 N

magnetic induction ~

318.70 mT / 3,187 Gs

max. temperature

≤ 80 °C

0.87 gross price (including VAT) / pcs +

0.71 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.71 ZŁ
0.87 ZŁ
price from 1360 pcs
0.64 ZŁ
0.79 ZŁ
price from 2720 pcs
0.62 ZŁ
0.76 ZŁ

Don't know what to buy?

Give us a call tel: +48 22 499 98 98 or get in touch through contact form on the contact page. You can check the mass and the shape of neodymium magnet in our power calculator magnetic mass calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 10x3 / N38 ↑ axial

Characteristics: cylindrical magnet 10x3 / N38 ↑ axial
Properties
Values
catalog number
010008
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
10 mm [±0,1 mm]
height
3 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
1.66 kg / 16.28 N
magnetic induction ~ ?
318.70 mT / 3,187 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
1.77 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets min. MW 10x3 / N38 are magnets made of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which outperform ordinary iron magnets. Thanks to their power, they are frequently employed in products that need strong adhesion. The typical temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well one of the most popular among neodymium magnets. The magnet with the designation MW 10x3 / N38 with a magnetic strength 1.66 kg has a weight of only 1.77 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of epoxy to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the current information as well as offers, and before visiting, please call.
Due to their strength, cylindrical neodymium magnets are very useful in many applications, they can also constitute certain dangers. Due to their significant magnetic power, they can attract metallic objects with uncontrolled force, which can lead to damaging skin and other surfaces, especially fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin protective layer. In short, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strong magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with other metals and then forming and thermal processing. Their unmatched magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as gold, to preserve them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can result in a loss of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.

Product suggestions

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose power over time - after about 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
  • Significant importance in the industry of new technologies – are used in hard drives, electric drive mechanisms, medical apparatus or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Possible danger associated with microscopic parts of magnets pose a threat, if swallowed, which becomes significant in the aspect of protecting young children. Furthermore, small elements of these devices have the potential to complicate diagnosis in case of swallowing.

Caution with Neodymium Magnets

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a major injury may occur. Magnets, depending on their size, can even cut off a finger or alternatively there can be a severe pressure or even a fracture.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are highly delicate, they easily crack as well as can crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

 It is essential to maintain neodymium magnets away from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98