MW 10x2 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010006
GTIN: 5906301810056
Diameter Ø [±0,1 mm]
10 mm
Height [±0,1 mm]
2 mm
Weight
1.18 g
Magnetization Direction
↑ axial
Load capacity
1.11 kg / 10.89 N
Magnetic Induction
230.11 mT
Coating
[NiCuNi] nickel
0.431 ZŁ with VAT / pcs + price for transport
0.350 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Give us a call
+48 22 499 98 98
otherwise contact us using
request form
through our site.
Weight as well as appearance of magnets can be checked using our
online calculation tool.
Orders submitted before 14:00 will be dispatched today!
MW 10x2 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of gold to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as gold, to protect them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their consistent magnetic energy, neodymium magnets have these key benefits:
- Their strength is durable, and after around ten years, it drops only by ~1% (theoretically),
- They protect against demagnetization induced by ambient electromagnetic environments very well,
- By applying a reflective layer of nickel, the element gains a sleek look,
- They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
- With the right combination of materials, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
- Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which expands their functional possibilities,
- Wide application in advanced technical fields – they find application in HDDs, electric drives, healthcare devices and technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them ideal in miniature devices
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a strong impact. If the magnets are exposed to shocks, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and reinforces its overall strength,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a wet environment. For outdoor use, we recommend using moisture-resistant magnets, such as those made of non-metallic materials,
- Limited ability to create internal holes in the magnet – the use of a mechanical support is recommended,
- Health risk linked to microscopic shards may arise, especially if swallowed, which is crucial in the family environments. Moreover, miniature parts from these magnets might disrupt scanning when ingested,
- Due to the price of neodymium, their cost is considerably higher,
Breakaway strength of the magnet in ideal conditions – what contributes to it?
The given lifting capacity of the magnet represents the maximum lifting force, determined under optimal conditions, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- under perpendicular detachment force
- at room temperature
Lifting capacity in real conditions – factors
The lifting capacity of a magnet is determined by in practice key elements, according to their importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured using a polished steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, whereas under attempts to slide the magnet the load capacity is reduced by as much as fivefold. In addition, even a minimal clearance {between} the magnet’s surface and the plate lowers the lifting capacity.
Handle Neodymium Magnets Carefully
Maintain neodymium magnets away from youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
If have a finger between or alternatively on the path of attracting magnets, there may be a serious cut or a fracture.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Magnets made of neodymium are fragile and can easily crack and shatter.
Neodymium magnetic are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Exercise caution!
So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.