MW 10x2 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010006
GTIN: 5906301810056
Diameter Ø [±0,1 mm]
10 mm
Height [±0,1 mm]
2 mm
Weight
1.18 g
Magnetization Direction
↑ axial
Load capacity
1.11 kg / 10.89 N
Magnetic Induction
230.11 mT
Coating
[NiCuNi] nickel
0.49 ZŁ with VAT / pcs + price for transport
0.40 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Contact us by phone
+48 888 99 98 98
or drop us a message through
form
the contact form page.
Lifting power along with appearance of magnets can be checked using our
modular calculator.
Same-day processing for orders placed before 14:00.
MW 10x2 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of gold-nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as silver, to protect them from environmental factors and prolong their durability. Temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their immense pulling force, neodymium magnets offer the following advantages:
- They have constant strength, and over more than 10 years their attraction force decreases symbolically – ~1% (in testing),
- They show strong resistance to demagnetization from external magnetic fields,
- Because of the reflective layer of nickel, the component looks high-end,
- They have exceptional magnetic induction on the surface of the magnet,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which expands their usage potential,
- Significant impact in modern technologies – they serve a purpose in computer drives, electric motors, clinical machines or even other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and additionally strengthens its overall resistance,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to moisture can degrade. Therefore, for outdoor applications, we advise waterproof types made of coated materials,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is difficult,
- Safety concern related to magnet particles may arise, when consumed by mistake, which is crucial in the health of young users. Additionally, tiny components from these products might disrupt scanning after being swallowed,
- In cases of large-volume purchasing, neodymium magnet cost may be a barrier,
Be Cautious with Neodymium Magnets
Neodymium magnets can demagnetize at high temperatures.
Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Magnets are not toys, children should not play with them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are delicate as well as can easily crack and get damaged.
Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will break. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Neodymium magnets will bounce and touch together within a distance of several to almost 10 cm from each other.
Caution!
To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are very strong neodymium magnets?.