MW 10x2 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010006
GTIN/EAN: 5906301810056
Diameter Ø
10 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
1.18 g
Magnetization Direction
↑ axial
Load capacity
1.27 kg / 12.50 N
Magnetic Induction
230.11 mT / 2301 Gs
Coating
[NiCuNi] Nickel
0.467 ZŁ with VAT / pcs + price for transport
0.380 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 888 99 98 98
otherwise drop us a message using
our online form
the contact section.
Strength along with appearance of neodymium magnets can be verified using our
modular calculator.
Same-day processing for orders placed before 14:00.
Physical properties - MW 10x2 / N38 - cylindrical magnet
Specification / characteristics - MW 10x2 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010006 |
| GTIN/EAN | 5906301810056 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 10 mm [±0,1 mm] |
| Height | 2 mm [±0,1 mm] |
| Weight | 1.18 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 1.27 kg / 12.50 N |
| Magnetic Induction ~ ? | 230.11 mT / 2301 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical analysis of the magnet - data
Presented values constitute the outcome of a physical calculation. Values were calculated on algorithms for the class Nd2Fe14B. Actual performance may deviate from the simulation results. Please consider these data as a reference point when designing systems.
Table 1: Static force (force vs distance) - power drop
MW 10x2 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2300 Gs
230.0 mT
|
1.27 kg / 2.80 lbs
1270.0 g / 12.5 N
|
low risk |
| 1 mm |
1974 Gs
197.4 mT
|
0.94 kg / 2.06 lbs
935.3 g / 9.2 N
|
low risk |
| 2 mm |
1570 Gs
157.0 mT
|
0.59 kg / 1.31 lbs
592.1 g / 5.8 N
|
low risk |
| 3 mm |
1194 Gs
119.4 mT
|
0.34 kg / 0.75 lbs
342.3 g / 3.4 N
|
low risk |
| 5 mm |
661 Gs
66.1 mT
|
0.10 kg / 0.23 lbs
104.9 g / 1.0 N
|
low risk |
| 10 mm |
178 Gs
17.8 mT
|
0.01 kg / 0.02 lbs
7.6 g / 0.1 N
|
low risk |
| 15 mm |
66 Gs
6.6 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
low risk |
| 20 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
low risk |
| 30 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
Table 2: Shear capacity (vertical surface)
MW 10x2 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.25 kg / 0.56 lbs
254.0 g / 2.5 N
|
| 1 mm | Stal (~0.2) |
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| 2 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
118.0 g / 1.2 N
|
| 3 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - vertical pull
MW 10x2 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.38 kg / 0.84 lbs
381.0 g / 3.7 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.25 kg / 0.56 lbs
254.0 g / 2.5 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.13 kg / 0.28 lbs
127.0 g / 1.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.64 kg / 1.40 lbs
635.0 g / 6.2 N
|
Table 4: Steel thickness (saturation) - sheet metal selection
MW 10x2 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.13 kg / 0.28 lbs
127.0 g / 1.2 N
|
| 1 mm |
|
0.32 kg / 0.70 lbs
317.5 g / 3.1 N
|
| 2 mm |
|
0.64 kg / 1.40 lbs
635.0 g / 6.2 N
|
| 3 mm |
|
0.95 kg / 2.10 lbs
952.5 g / 9.3 N
|
| 5 mm |
|
1.27 kg / 2.80 lbs
1270.0 g / 12.5 N
|
| 10 mm |
|
1.27 kg / 2.80 lbs
1270.0 g / 12.5 N
|
| 11 mm |
|
1.27 kg / 2.80 lbs
1270.0 g / 12.5 N
|
| 12 mm |
|
1.27 kg / 2.80 lbs
1270.0 g / 12.5 N
|
Table 5: Thermal stability (material behavior) - thermal limit
MW 10x2 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.27 kg / 2.80 lbs
1270.0 g / 12.5 N
|
OK |
| 40 °C | -2.2% |
1.24 kg / 2.74 lbs
1242.1 g / 12.2 N
|
OK |
| 60 °C | -4.4% |
1.21 kg / 2.68 lbs
1214.1 g / 11.9 N
|
|
| 80 °C | -6.6% |
1.19 kg / 2.62 lbs
1186.2 g / 11.6 N
|
|
| 100 °C | -28.8% |
0.90 kg / 1.99 lbs
904.2 g / 8.9 N
|
Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MW 10x2 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.56 kg / 5.65 lbs
3 867 Gs
|
0.38 kg / 0.85 lbs
384 g / 3.8 N
|
N/A |
| 1 mm |
2.25 kg / 4.96 lbs
4 312 Gs
|
0.34 kg / 0.74 lbs
338 g / 3.3 N
|
2.03 kg / 4.46 lbs
~0 Gs
|
| 2 mm |
1.89 kg / 4.16 lbs
3 948 Gs
|
0.28 kg / 0.62 lbs
283 g / 2.8 N
|
1.70 kg / 3.74 lbs
~0 Gs
|
| 3 mm |
1.52 kg / 3.36 lbs
3 548 Gs
|
0.23 kg / 0.50 lbs
229 g / 2.2 N
|
1.37 kg / 3.02 lbs
~0 Gs
|
| 5 mm |
0.92 kg / 2.02 lbs
2 750 Gs
|
0.14 kg / 0.30 lbs
137 g / 1.3 N
|
0.82 kg / 1.82 lbs
~0 Gs
|
| 10 mm |
0.21 kg / 0.47 lbs
1 322 Gs
|
0.03 kg / 0.07 lbs
32 g / 0.3 N
|
0.19 kg / 0.42 lbs
~0 Gs
|
| 20 mm |
0.02 kg / 0.03 lbs
355 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
33 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
20 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MW 10x2 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 4.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 3.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 2.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 2.0 cm |
| Remote | 50 Gs (5.0 mT) | 2.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (cracking risk) - warning
MW 10x2 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
33.21 km/h
(9.22 m/s)
|
0.05 J | |
| 30 mm |
57.31 km/h
(15.92 m/s)
|
0.15 J | |
| 50 mm |
73.98 km/h
(20.55 m/s)
|
0.25 J | |
| 100 mm |
104.63 km/h
(29.06 m/s)
|
0.50 J |
Table 9: Anti-corrosion coating durability
MW 10x2 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MW 10x2 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 2 097 Mx | 21.0 µWb |
| Pc Coefficient | 0.29 | Low (Flat) |
Table 11: Physics of underwater searching
MW 10x2 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 1.27 kg | Standard |
| Water (riverbed) |
1.45 kg
(+0.18 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical surface, the magnet retains merely ~20% of its nominal pull.
2. Efficiency vs thickness
*Thin metal sheet (e.g. 0.5mm PC case) drastically weakens the holding force.
3. Thermal stability
*For standard magnets, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.29
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other products
Pros and cons of rare earth magnets.
Strengths
- They do not lose magnetism, even during approximately 10 years – the decrease in lifting capacity is only ~1% (based on measurements),
- They are extremely resistant to demagnetization induced by presence of other magnetic fields,
- By using a decorative layer of silver, the element acquires an aesthetic look,
- Magnets have extremely high magnetic induction on the surface,
- Through (adequate) combination of ingredients, they can achieve high thermal resistance, allowing for operation at temperatures approaching 230°C and above...
- Possibility of precise machining as well as adjusting to precise applications,
- Universal use in advanced technology sectors – they serve a role in magnetic memories, drive modules, medical equipment, also other advanced devices.
- Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications
Cons
- They are prone to damage upon heavy impacts. To avoid cracks, it is worth protecting magnets using a steel holder. Such protection not only shields the magnet but also increases its resistance to damage
- Neodymium magnets lose their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
- When exposed to humidity, magnets usually rust. For applications outside, it is recommended to use protective magnets, such as those in rubber or plastics, which prevent oxidation and corrosion.
- Due to limitations in creating threads and complex shapes in magnets, we recommend using casing - magnetic mechanism.
- Possible danger related to microscopic parts of magnets are risky, in case of ingestion, which becomes key in the aspect of protecting the youngest. Additionally, small elements of these magnets are able to disrupt the diagnostic process medical in case of swallowing.
- With mass production the cost of neodymium magnets is economically unviable,
Pull force analysis
Optimal lifting capacity of a neodymium magnet – what affects it?
- on a base made of structural steel, effectively closing the magnetic field
- possessing a massiveness of at least 10 mm to ensure full flux closure
- with a plane cleaned and smooth
- without the slightest clearance between the magnet and steel
- for force applied at a right angle (in the magnet axis)
- at standard ambient temperature
Lifting capacity in practice – influencing factors
- Space between surfaces – every millimeter of distance (caused e.g. by veneer or unevenness) diminishes the pulling force, often by half at just 0.5 mm.
- Load vector – highest force is obtained only during pulling at a 90° angle. The force required to slide of the magnet along the surface is usually several times smaller (approx. 1/5 of the lifting capacity).
- Substrate thickness – for full efficiency, the steel must be sufficiently thick. Paper-thin metal limits the attraction force (the magnet "punches through" it).
- Material composition – different alloys reacts the same. High carbon content worsen the interaction with the magnet.
- Surface quality – the smoother and more polished the surface, the larger the contact zone and stronger the hold. Roughness creates an air distance.
- Heat – neodymium magnets have a sensitivity to temperature. At higher temperatures they lose power, and in frost gain strength (up to a certain limit).
Lifting capacity testing was conducted on a smooth plate of optimal thickness, under perpendicular forces, whereas under shearing force the holding force is lower. Moreover, even a slight gap between the magnet and the plate reduces the lifting capacity.
Safety rules for work with NdFeB magnets
Swallowing risk
Adult use only. Small elements can be swallowed, causing severe trauma. Keep away from kids and pets.
Protect data
Data protection: Neodymium magnets can damage payment cards and delicate electronics (heart implants, hearing aids, timepieces).
Medical implants
Warning for patients: Powerful magnets disrupt medical devices. Keep minimum 30 cm distance or ask another person to work with the magnets.
Threat to navigation
Note: neodymium magnets produce a field that interferes with precision electronics. Maintain a separation from your mobile, device, and GPS.
Warning for allergy sufferers
Warning for allergy sufferers: The nickel-copper-nickel coating contains nickel. If redness happens, cease handling magnets and use protective gear.
Caution required
Use magnets with awareness. Their huge power can shock even experienced users. Be vigilant and do not underestimate their power.
Bodily injuries
Large magnets can smash fingers in a fraction of a second. Never place your hand between two strong magnets.
Dust is flammable
Fire warning: Neodymium dust is explosive. Do not process magnets in home conditions as this risks ignition.
Heat warning
Avoid heat. NdFeB magnets are sensitive to heat. If you require resistance above 80°C, ask us about HT versions (H, SH, UH).
Fragile material
Despite metallic appearance, the material is brittle and not impact-resistant. Do not hit, as the magnet may shatter into sharp, dangerous pieces.
