tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. All "magnets" on our website are in stock for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnet for searching F400 GOLD

Where to buy very strong neodymium magnet? Magnetic holders in solid and airtight steel enclosure are excellent for use in difficult weather, including during snow and rain check...

magnets with holders

Holders with magnets can be used to enhance production, exploring underwater areas, or searching for space rocks made of ore see more...

Shipping is always shipped if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 10x2 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010006

GTIN: 5906301810056

5

Diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

2 mm

Weight

1.18 g

Magnetization Direction

↑ axial

Load capacity

1.11 kg / 10.89 N

Magnetic Induction

230.11 mT

Coating

[NiCuNi] nickel

0.43 with VAT / pcs + price for transport

0.35 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.35 ZŁ
0.43 ZŁ
price from 2000 pcs
0.31 ZŁ
0.38 ZŁ
price from 4000 pcs
0.30 ZŁ
0.37 ZŁ

Need help making a decision?

Call us now +48 888 99 98 98 if you prefer drop us a message by means of inquiry form the contact page.
Parameters as well as structure of neodymium magnets can be reviewed using our modular calculator.

Orders submitted before 14:00 will be dispatched today!

MW 10x2 / N38 - cylindrical magnet

Specification/characteristics MW 10x2 / N38 - cylindrical magnet
properties
values
Cat. no.
010006
GTIN
5906301810056
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
10 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
1.18 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.11 kg / 10.89 N
Magnetic Induction ~ ?
230.11 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 10x2 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which exceed traditional ferrite magnets. Because of their power, they are frequently employed in products that need powerful holding. The typical temperature resistance of such magnets is 80°C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is as well very popular among neodymium magnets. The magnet named MW 10x2 / N38 with a magnetic force 1.11 kg weighs only 1.18 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the site for the latest information as well as promotions, and before visiting, please call.
Due to their strength, cylindrical neodymium magnets are very practical in many applications, they can also constitute certain dangers. Due to their significant magnetic power, they can attract metallic objects with great force, which can lead to damaging skin and other materials, especially be careful with fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin protective layer. Generally, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves fusing special alloys of neodymium with other metals and then forming and thermal processing. Their unmatched magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as gold, to shield them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
A cylindrical magnet in classes N50 and N52 is a strong and extremely powerful metallic component with the shape of a cylinder, providing high force and broad usability. Very good price, 24h delivery, ruggedness and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They retain their full power for nearly 10 years – the drop is just ~1% (in theory),
  • Their ability to resist magnetic interference from external fields is among the best,
  • In other words, due to the metallic gold coating, the magnet obtains an aesthetic appearance,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • The ability for precise shaping as well as adjustment to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
  • Important function in new technology industries – they are used in computer drives, electric motors, clinical machines and high-tech tools,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall robustness,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a humid environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of plastic,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
  • Possible threat due to small fragments may arise, especially if swallowed, which is significant in the family environments. Moreover, tiny components from these assemblies can interfere with diagnostics if inside the body,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum magnetic pulling forcewhat it depends on?

The given holding capacity of the magnet corresponds to the highest holding force, determined in ideal conditions, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • in normal thermal conditions

Lifting capacity in practice – influencing factors

In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, whereas under shearing force the holding force is lower. Additionally, even a minimal clearance {between} the magnet’s surface and the plate decreases the lifting capacity.

Exercise Caution with Neodymium Magnets

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Magnets made of neodymium are fragile and can easily break and get damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Neodymium magnets are the most powerful magnets ever created, and their strength can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

  Do not give neodymium magnets to children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Safety precautions!

So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98