MW 10x15 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010005
GTIN/EAN: 5906301810049
Diameter Ø
10 mm [±0,1 mm]
Height
15 mm [±0,1 mm]
Weight
8.84 g
Magnetization Direction
↑ axial
Load capacity
2.60 kg / 25.51 N
Magnetic Induction
587.44 mT / 5874 Gs
Coating
[NiCuNi] Nickel
6.15 ZŁ with VAT / pcs + price for transport
5.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 888 99 98 98
if you prefer drop us a message through
contact form
the contact form page.
Parameters along with shape of neodymium magnets can be reviewed with our
force calculator.
Orders submitted before 14:00 will be dispatched today!
Technical - MW 10x15 / N38 - cylindrical magnet
Specification / characteristics - MW 10x15 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010005 |
| GTIN/EAN | 5906301810049 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 10 mm [±0,1 mm] |
| Height | 15 mm [±0,1 mm] |
| Weight | 8.84 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 2.60 kg / 25.51 N |
| Magnetic Induction ~ ? | 587.44 mT / 5874 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the magnet - report
Presented values are the result of a mathematical simulation. Results are based on models for the material Nd2Fe14B. Actual conditions might slightly differ. Treat these calculations as a supplementary guide for designers.
Table 1: Static pull force (force vs distance) - power drop
MW 10x15 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5870 Gs
587.0 mT
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
strong |
| 1 mm |
4702 Gs
470.2 mT
|
1.67 kg / 3.68 lbs
1668.3 g / 16.4 N
|
safe |
| 2 mm |
3645 Gs
364.5 mT
|
1.00 kg / 2.21 lbs
1002.8 g / 9.8 N
|
safe |
| 3 mm |
2784 Gs
278.4 mT
|
0.58 kg / 1.29 lbs
584.8 g / 5.7 N
|
safe |
| 5 mm |
1631 Gs
163.1 mT
|
0.20 kg / 0.44 lbs
200.7 g / 2.0 N
|
safe |
| 10 mm |
534 Gs
53.4 mT
|
0.02 kg / 0.05 lbs
21.5 g / 0.2 N
|
safe |
| 15 mm |
234 Gs
23.4 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
safe |
| 20 mm |
123 Gs
12.3 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
safe |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
safe |
| 50 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Sliding capacity (vertical surface)
MW 10x15 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.52 kg / 1.15 lbs
520.0 g / 5.1 N
|
| 1 mm | Stal (~0.2) |
0.33 kg / 0.74 lbs
334.0 g / 3.3 N
|
| 2 mm | Stal (~0.2) |
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
| 3 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
116.0 g / 1.1 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MW 10x15 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.78 kg / 1.72 lbs
780.0 g / 7.7 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.52 kg / 1.15 lbs
520.0 g / 5.1 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
Table 4: Material efficiency (substrate influence) - power losses
MW 10x15 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| 1 mm |
|
0.65 kg / 1.43 lbs
650.0 g / 6.4 N
|
| 2 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
| 3 mm |
|
1.95 kg / 4.30 lbs
1950.0 g / 19.1 N
|
| 5 mm |
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
| 10 mm |
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
| 11 mm |
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
| 12 mm |
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
Table 5: Thermal resistance (stability) - power drop
MW 10x15 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
OK |
| 40 °C | -2.2% |
2.54 kg / 5.61 lbs
2542.8 g / 24.9 N
|
OK |
| 60 °C | -4.4% |
2.49 kg / 5.48 lbs
2485.6 g / 24.4 N
|
OK |
| 80 °C | -6.6% |
2.43 kg / 5.35 lbs
2428.4 g / 23.8 N
|
|
| 100 °C | -28.8% |
1.85 kg / 4.08 lbs
1851.2 g / 18.2 N
|
Table 6: Two magnets (attraction) - forces in the system
MW 10x15 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
16.68 kg / 36.78 lbs
6 103 Gs
|
2.50 kg / 5.52 lbs
2502 g / 24.5 N
|
N/A |
| 1 mm |
13.52 kg / 29.80 lbs
10 567 Gs
|
2.03 kg / 4.47 lbs
2028 g / 19.9 N
|
12.17 kg / 26.82 lbs
~0 Gs
|
| 2 mm |
10.70 kg / 23.60 lbs
9 404 Gs
|
1.61 kg / 3.54 lbs
1606 g / 15.8 N
|
9.63 kg / 21.24 lbs
~0 Gs
|
| 3 mm |
8.35 kg / 18.40 lbs
8 304 Gs
|
1.25 kg / 2.76 lbs
1252 g / 12.3 N
|
7.51 kg / 16.56 lbs
~0 Gs
|
| 5 mm |
4.92 kg / 10.85 lbs
6 377 Gs
|
0.74 kg / 1.63 lbs
738 g / 7.2 N
|
4.43 kg / 9.77 lbs
~0 Gs
|
| 10 mm |
1.29 kg / 2.84 lbs
3 262 Gs
|
0.19 kg / 0.43 lbs
193 g / 1.9 N
|
1.16 kg / 2.56 lbs
~0 Gs
|
| 20 mm |
0.14 kg / 0.30 lbs
1 068 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
145 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
93 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
63 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
45 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
33 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (implants) - warnings
MW 10x15 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 7.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 5.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 4.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 3.5 cm |
| Car key | 50 Gs (5.0 mT) | 3.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (cracking risk) - warning
MW 10x15 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
17.39 km/h
(4.83 m/s)
|
0.10 J | |
| 30 mm |
29.96 km/h
(8.32 m/s)
|
0.31 J | |
| 50 mm |
38.67 km/h
(10.74 m/s)
|
0.51 J | |
| 100 mm |
54.69 km/h
(15.19 m/s)
|
1.02 J |
Table 9: Coating parameters (durability)
MW 10x15 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MW 10x15 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 4 950 Mx | 49.5 µWb |
| Pc Coefficient | 1.09 | High (Stable) |
Table 11: Underwater work (magnet fishing)
MW 10x15 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 2.60 kg | Standard |
| Water (riverbed) |
2.98 kg
(+0.38 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Note: On a vertical surface, the magnet holds just approx. 20-30% of its nominal pull.
2. Steel thickness impact
*Thin steel (e.g. computer case) severely limits the holding force.
3. Heat tolerance
*For standard magnets, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.09
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other proposals
Strengths as well as weaknesses of Nd2Fe14B magnets.
Pros
- They do not lose magnetism, even over approximately ten years – the reduction in strength is only ~1% (based on measurements),
- Neodymium magnets prove to be highly resistant to demagnetization caused by external magnetic fields,
- The use of an metallic layer of noble metals (nickel, gold, silver) causes the element to be more visually attractive,
- The surface of neodymium magnets generates a concentrated magnetic field – this is a key feature,
- Neodymium magnets are characterized by very high magnetic induction on the magnet surface and can function (depending on the shape) even at a temperature of 230°C or more...
- Thanks to freedom in forming and the capacity to modify to complex applications,
- Huge importance in modern industrial fields – they find application in mass storage devices, electric drive systems, diagnostic systems, also industrial machines.
- Thanks to efficiency per cm³, small magnets offer high operating force, occupying minimum space,
Cons
- Susceptibility to cracking is one of their disadvantages. Upon strong impact they can fracture. We advise keeping them in a strong case, which not only protects them against impacts but also raises their durability
- When exposed to high temperature, neodymium magnets suffer a drop in power. Often, when the temperature exceeds 80°C, their power decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we advise using waterproof magnets made of rubber, plastic or other material immune to moisture, in case of application outdoors
- Due to limitations in producing threads and complex shapes in magnets, we propose using a housing - magnetic mount.
- Health risk related to microscopic parts of magnets can be dangerous, when accidentally swallowed, which is particularly important in the context of child safety. It is also worth noting that small elements of these magnets can disrupt the diagnostic process medical after entering the body.
- With large orders the cost of neodymium magnets is economically unviable,
Holding force characteristics
Maximum lifting force for a neodymium magnet – what contributes to it?
- on a base made of structural steel, optimally conducting the magnetic flux
- with a thickness minimum 10 mm
- characterized by even structure
- under conditions of gap-free contact (metal-to-metal)
- during detachment in a direction vertical to the mounting surface
- in stable room temperature
What influences lifting capacity in practice
- Distance (between the magnet and the plate), because even a tiny clearance (e.g. 0.5 mm) results in a drastic drop in lifting capacity by up to 50% (this also applies to varnish, rust or dirt).
- Angle of force application – maximum parameter is reached only during perpendicular pulling. The resistance to sliding of the magnet along the surface is typically several times lower (approx. 1/5 of the lifting capacity).
- Wall thickness – thin material does not allow full use of the magnet. Part of the magnetic field passes through the material instead of converting into lifting capacity.
- Chemical composition of the base – low-carbon steel attracts best. Alloy admixtures lower magnetic permeability and holding force.
- Base smoothness – the smoother and more polished the surface, the better the adhesion and stronger the hold. Roughness creates an air distance.
- Thermal environment – temperature increase causes a temporary drop of induction. It is worth remembering the maximum operating temperature for a given model.
Holding force was measured on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under parallel forces the lifting capacity is smaller. Additionally, even a slight gap between the magnet and the plate decreases the lifting capacity.
Warnings
Danger to the youngest
Always store magnets out of reach of children. Ingestion danger is significant, and the consequences of magnets connecting inside the body are very dangerous.
GPS Danger
Note: rare earth magnets produce a field that disrupts precision electronics. Keep a safe distance from your mobile, device, and GPS.
Operating temperature
Standard neodymium magnets (N-type) lose magnetization when the temperature exceeds 80°C. This process is irreversible.
Cards and drives
Equipment safety: Neodymium magnets can damage payment cards and sensitive devices (pacemakers, medical aids, mechanical watches).
Fire warning
Drilling and cutting of NdFeB material poses a fire risk. Neodymium dust oxidizes rapidly with oxygen and is hard to extinguish.
Safe operation
Use magnets consciously. Their immense force can surprise even experienced users. Stay alert and respect their force.
Pinching danger
Big blocks can crush fingers instantly. Under no circumstances place your hand betwixt two strong magnets.
Magnet fragility
NdFeB magnets are ceramic materials, meaning they are fragile like glass. Collision of two magnets leads to them cracking into shards.
ICD Warning
People with a ICD have to keep an large gap from magnets. The magnetic field can interfere with the functioning of the implant.
Warning for allergy sufferers
Allergy Notice: The Ni-Cu-Ni coating consists of nickel. If an allergic reaction occurs, cease working with magnets and wear gloves.
