tel: +48 888 99 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our store's offer. Practically all magnesy neodymowe on our website are available for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnets for searching F200 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in airtight, solid steel enclosure are excellent for use in difficult, demanding weather, including snow and rain more information...

magnetic holders

Holders with magnets can be applied to enhance production processes, underwater exploration, or locating meteorites from gold check...

Shipping always shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 10x15 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010005

GTIN: 5906301810049

5

Diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

15 mm

Weight

8.84 g

Magnetization Direction

↑ axial

Load capacity

8.29 kg / 81.3 N

Magnetic Induction

587.44 mT

Coating

[NiCuNi] nickel

3.20 with VAT / pcs + price for transport

2.60 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2.60 ZŁ
3.20 ZŁ
price from 250 pcs
2.44 ZŁ
3.01 ZŁ
price from 1000 pcs
2.29 ZŁ
2.81 ZŁ

Looking for a better price?

Contact us by phone +48 22 499 98 98 if you prefer let us know via contact form the contact page.
Force and form of a neodymium magnet can be verified on our our magnetic calculator.

Order by 14:00 and we’ll ship today!

MW 10x15 / N38 - cylindrical magnet

Specification/characteristics MW 10x15 / N38 - cylindrical magnet
properties
values
Cat. no.
010005
GTIN
5906301810049
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
10 mm [±0,1 mm]
Height
15 mm [±0,1 mm]
Weight
8.84 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
8.29 kg / 81.3 N
Magnetic Induction ~ ?
587.44 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 10x15 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their extremely powerful magnetic properties, which exceed traditional iron magnets. Thanks to their strength, they are frequently employed in devices that require powerful holding. The typical temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well one of the most popular among neodymium magnets. The magnet named MW 10x15 / N38 and a magnetic strength 8.29 kg has a weight of only 8.84 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the website for the latest information as well as promotions, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very practical in many applications, they can also constitute certain risk. Due to their strong magnetic power, they can pull metallic objects with great force, which can lead to crushing skin as well as other surfaces, especially hands. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the very strong magnets on the market. They are produced through a complicated sintering process, which involves melting specific alloys of neodymium with additional metals and then forming and heat treating. Their amazing magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as nickel, to preserve them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
A neodymium magnet with classification N52 and N50 is a powerful and strong magnetic piece with the shape of a cylinder, providing strong holding power and broad usability. Attractive price, fast shipping, resistance and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their immense strength, neodymium magnets offer the following advantages:

  • They retain their full power for nearly ten years – the loss is just ~1% (based on simulations),
  • They are highly resistant to demagnetization caused by external magnetic fields,
  • In other words, due to the glossy silver coating, the magnet obtains an aesthetic appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
  • With the option for fine forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Important function in modern technologies – they are utilized in hard drives, rotating machines, healthcare devices as well as sophisticated instruments,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to external force, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage and additionally increases its overall robustness,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to moisture can corrode. Therefore, for outdoor applications, we advise waterproof types made of rubber,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is not feasible,
  • Safety concern linked to microscopic shards may arise, especially if swallowed, which is notable in the family environments. Additionally, minuscule fragments from these products have the potential to disrupt scanning when ingested,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting capacity of the magnetwhat it depends on?

The given pulling force of the magnet means the maximum force, assessed in a perfect environment, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • in normal thermal conditions

Determinants of practical lifting force of a magnet

The lifting capacity of a magnet is influenced by in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under perpendicular forces, however under parallel forces the holding force is lower. Additionally, even a minimal clearance {between} the magnet and the plate decreases the load capacity.

Handle Neodymium Magnets Carefully

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful magnets ever created, and their power can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will crack or crumble with careless joining to each other. You can't move them to each other. At a distance less than 10 cm you should hold them extremely firmly.

 Keep neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnetic are highly susceptible to damage, leading to breaking.

Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Warning!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98