e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnets Nd2Fe14B - our offer. All "magnets" in our store are available for immediate purchase (see the list). See the magnet pricing for more details see the magnet price list

Magnet for searching F200 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in airtight, solid enclosure are ideally suited for use in difficult weather conditions, including during rain and snow read...

magnets with holders

Holders with magnets can be applied to facilitate production processes, exploring underwater areas, or finding meteors from gold more...

Enjoy delivery of your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SMZR 25x150 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140234

GTIN: 5906301813422

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

150 mm

Weight

0.01 g

430.50 with VAT / pcs + price for transport

350.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
350.00 ZŁ
430.50 ZŁ
price from 5 pcs
329.00 ZŁ
404.67 ZŁ
price from 10 pcs
308.00 ZŁ
378.84 ZŁ

Want to talk magnets?

Call us +48 22 499 98 98 if you prefer drop us a message through our online form through our site.
Force and form of a magnet can be tested on our online calculation tool.

Same-day processing for orders placed before 14:00.

SMZR 25x150 / N52 - magnetic separator with handle

Specification/characteristics SMZR 25x150 / N52 - magnetic separator with handle
properties
values
Cat. no.
140234
GTIN
5906301813422
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
150 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

It is an essential item in every scrap yard and waste sorting plant. It enables material segregation in the yard. It is also useful for extracting small steel elements from crates, ash, or sand.
The tool reacts to black steel but does not attract most stainless steels (austenitic). No reaction means the tested object is made of non-magnetic material.
The neodymium model offers powerful force with low weight, reducing arm fatigue. The strong neodymium field detects even weakly magnetic alloys. It is a modern solution replacing heavy ferrite magnets.
The neodymium magnet is enclosed in a solid metal housing (steel or brass). The handle is designed not to slip in the hand. The tool is durable and prepared for hard work.
It is a simple design without moving parts, so cleaning involves removing the scrap. If you are looking for automatic release, ask about models with a release system. In the case of strong magnets, it is easiest to slide the metal to the side of the housing.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their tremendous magnetic power, neodymium magnets offer the following advantages:

  • Their magnetic field remains stable, and after around 10 years, it drops only by ~1% (according to research),
  • They protect against demagnetization induced by external magnetic influence very well,
  • Because of the reflective layer of nickel, the component looks high-end,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which broadens their usage potential,
  • Important function in new technology industries – they find application in computer drives, electromechanical systems, diagnostic apparatus as well as technologically developed systems,
  • Thanks to their power density, small magnets offer high magnetic performance, with minimal size,

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to mechanical hits, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks and additionally increases its overall robustness,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a moist environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of plastic,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is restricted,
  • Health risk related to magnet particles may arise, when consumed by mistake, which is notable in the context of child safety. Furthermore, minuscule fragments from these devices have the potential to complicate medical imaging after being swallowed,
  • In cases of mass production, neodymium magnet cost may be a barrier,

Magnetic strength at its maximum – what affects it?

The given strength of the magnet means the optimal strength, determined in ideal conditions, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Practical lifting capacity: influencing factors

In practice, the holding capacity of a magnet is conditioned by these factors, in descending order of importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under shearing force the lifting capacity is smaller. Moreover, even a small distance {between} the magnet and the plate decreases the lifting capacity.

Caution with Neodymium Magnets

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets are delicate and can easily crack as well as get damaged.

Neodymium magnets are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

 It is essential to maintain neodymium magnets out of reach from children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a significant pressure or even a fracture.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Safety rules!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98