SMZR 25x150 / N52 - magnetic separator with handle
magnetic separator with handle
Catalog no 140234
GTIN: 5906301813422
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
150 mm
Weight
0.01 g
430.50 ZŁ with VAT / pcs + price for transport
350.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Pick up the phone and ask
+48 888 99 98 98
otherwise drop us a message using
form
our website.
Strength and structure of a neodymium magnet can be checked with our
force calculator.
Orders placed before 14:00 will be shipped the same business day.
SMZR 25x150 / N52 - magnetic separator with handle
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their notable magnetic energy, neodymium magnets have these key benefits:
- They have unchanged lifting capacity, and over nearly ten years their attraction force decreases symbolically – ~1% (according to theory),
- They show superior resistance to demagnetization from external magnetic fields,
- The use of a mirror-like gold surface provides a eye-catching finish,
- They have exceptional magnetic induction on the surface of the magnet,
- These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
- Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which expands their functional possibilities,
- Important function in modern technologies – they are utilized in HDDs, electric drives, medical equipment and high-tech tools,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and additionally strengthens its overall resistance,
- They lose strength at high temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
- Limited ability to create precision features in the magnet – the use of a external casing is recommended,
- Potential hazard from tiny pieces may arise, in case of ingestion, which is important in the protection of children. Furthermore, minuscule fragments from these magnets can hinder health screening if inside the body,
- Due to expensive raw materials, their cost is considerably higher,
Maximum lifting capacity of the magnet – what affects it?
The given strength of the magnet means the optimal strength, assessed in ideal conditions, that is:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a smooth surface
- in conditions of no clearance
- in a perpendicular direction of force
- in normal thermal conditions
Lifting capacity in practice – influencing factors
In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed with the use of a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the holding force is lower. Moreover, even a minimal clearance {between} the magnet and the plate lowers the holding force.
Handle Neodymium Magnets with Caution
Never bring neodymium magnets close to a phone and GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets should not be around youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.
Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
If you have a finger between or alternatively on the path of attracting magnets, there may be a serious cut or a fracture.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Magnets made of neodymium are noted for their fragility, which can cause them to shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Pay attention!
So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.