e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. All "neodymium magnets" in our store are in stock for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnet for searching F200 GOLD

Where to buy very strong magnet? Magnetic holders in airtight and durable steel casing are perfect for use in variable and difficult weather, including during rain and snow see more...

magnetic holders

Magnetic holders can be used to enhance production, underwater exploration, or searching for meteors made of metal read...

Shipping is always shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SMZR 25x150 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140234

GTIN: 5906301813422

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

150 mm

Weight

0.01 g

430.50 with VAT / pcs + price for transport

350.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
350.00 ZŁ
430.50 ZŁ
price from 5 pcs
329.00 ZŁ
404.67 ZŁ
price from 10 pcs
308.00 ZŁ
378.84 ZŁ

Do you have trouble choosing?

Call us now +48 888 99 98 98 otherwise drop us a message using form the contact page.
Parameters and structure of a magnet can be calculated using our online calculation tool.

Same-day shipping for orders placed before 14:00.

SMZR 25x150 / N52 - magnetic separator with handle

Specification/characteristics SMZR 25x150 / N52 - magnetic separator with handle
properties
values
Cat. no.
140234
GTIN
5906301813422
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
150 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Furthermore, it's necessary to observe handling rules when operating strong magnets, to prevent device breakage or injuries.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their notable magnetic energy, neodymium magnets have these key benefits:

  • They virtually do not lose power, because even after ten years, the performance loss is only ~1% (according to literature),
  • They remain magnetized despite exposure to strong external fields,
  • In other words, due to the glossy gold coating, the magnet obtains an stylish appearance,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • The ability for precise shaping as well as adaptation to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Wide application in advanced technical fields – they are used in computer drives, electromechanical systems, healthcare devices as well as sophisticated instruments,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to physical collisions, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall robustness,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to wet conditions can rust. Therefore, for outdoor applications, we advise waterproof types made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing complex structures directly in the magnet,
  • Safety concern from tiny pieces may arise, when consumed by mistake, which is notable in the family environments. Additionally, minuscule fragments from these devices may hinder health screening when ingested,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum magnetic pulling forcewhat contributes to it?

The given lifting capacity of the magnet represents the maximum lifting force, determined in the best circumstances, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with zero air gap
  • under perpendicular detachment force
  • at room temperature

Impact of factors on magnetic holding capacity in practice

The lifting capacity of a magnet is determined by in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined using a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, whereas under shearing force the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate decreases the load capacity.

Exercise Caution with Neodymium Magnets

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are known for their fragility, which can cause them to shatter.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

In the situation of holding a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Exercise caution!

In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98