MPL 80x40x15 / N38 - lamellar magnet
lamellar magnet
Catalog no 020177
GTIN/EAN: 5906301811831
length
80 mm [±0,1 mm]
Width
40 mm [±0,1 mm]
Height
15 mm [±0,1 mm]
Weight
360 g
Magnetization Direction
↑ axial
Load capacity
73.57 kg / 721.75 N
Magnetic Induction
285.78 mT / 2858 Gs
Coating
[NiCuNi] Nickel
139.54 ZŁ with VAT / pcs + price for transport
113.45 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 888 99 98 98
if you prefer drop us a message using
our online form
our website.
Specifications and appearance of a neodymium magnet can be verified using our
power calculator.
Order by 14:00 and we’ll ship today!
Technical - MPL 80x40x15 / N38 - lamellar magnet
Specification / characteristics - MPL 80x40x15 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020177 |
| GTIN/EAN | 5906301811831 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 80 mm [±0,1 mm] |
| Width | 40 mm [±0,1 mm] |
| Height | 15 mm [±0,1 mm] |
| Weight | 360 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 73.57 kg / 721.75 N |
| Magnetic Induction ~ ? | 285.78 mT / 2858 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering modeling of the assembly - technical parameters
The following values represent the direct effect of a engineering calculation. Values were calculated on algorithms for the material Nd2Fe14B. Operational performance may differ from theoretical values. Use these calculations as a preliminary roadmap for designers.
Table 1: Static force (pull vs gap) - power drop
MPL 80x40x15 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2857 Gs
285.7 mT
|
73.57 kg / 162.19 lbs
73570.0 g / 721.7 N
|
crushing |
| 1 mm |
2778 Gs
277.8 mT
|
69.55 kg / 153.32 lbs
69546.1 g / 682.2 N
|
crushing |
| 2 mm |
2693 Gs
269.3 mT
|
65.33 kg / 144.03 lbs
65331.2 g / 640.9 N
|
crushing |
| 3 mm |
2603 Gs
260.3 mT
|
61.05 kg / 134.59 lbs
61047.5 g / 598.9 N
|
crushing |
| 5 mm |
2415 Gs
241.5 mT
|
52.56 kg / 115.87 lbs
52559.7 g / 515.6 N
|
crushing |
| 10 mm |
1943 Gs
194.3 mT
|
34.02 kg / 75.00 lbs
34021.1 g / 333.7 N
|
crushing |
| 15 mm |
1527 Gs
152.7 mT
|
21.01 kg / 46.31 lbs
21007.7 g / 206.1 N
|
crushing |
| 20 mm |
1192 Gs
119.2 mT
|
12.81 kg / 28.24 lbs
12808.1 g / 125.6 N
|
crushing |
| 30 mm |
736 Gs
73.6 mT
|
4.89 kg / 10.77 lbs
4886.6 g / 47.9 N
|
medium risk |
| 50 mm |
313 Gs
31.3 mT
|
0.88 kg / 1.95 lbs
884.8 g / 8.7 N
|
weak grip |
Table 2: Vertical load (wall)
MPL 80x40x15 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
14.71 kg / 32.44 lbs
14714.0 g / 144.3 N
|
| 1 mm | Stal (~0.2) |
13.91 kg / 30.67 lbs
13910.0 g / 136.5 N
|
| 2 mm | Stal (~0.2) |
13.07 kg / 28.81 lbs
13066.0 g / 128.2 N
|
| 3 mm | Stal (~0.2) |
12.21 kg / 26.92 lbs
12210.0 g / 119.8 N
|
| 5 mm | Stal (~0.2) |
10.51 kg / 23.17 lbs
10512.0 g / 103.1 N
|
| 10 mm | Stal (~0.2) |
6.80 kg / 15.00 lbs
6804.0 g / 66.7 N
|
| 15 mm | Stal (~0.2) |
4.20 kg / 9.26 lbs
4202.0 g / 41.2 N
|
| 20 mm | Stal (~0.2) |
2.56 kg / 5.65 lbs
2562.0 g / 25.1 N
|
| 30 mm | Stal (~0.2) |
0.98 kg / 2.16 lbs
978.0 g / 9.6 N
|
| 50 mm | Stal (~0.2) |
0.18 kg / 0.39 lbs
176.0 g / 1.7 N
|
Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MPL 80x40x15 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
22.07 kg / 48.66 lbs
22071.0 g / 216.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
14.71 kg / 32.44 lbs
14714.0 g / 144.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
7.36 kg / 16.22 lbs
7357.0 g / 72.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
36.79 kg / 81.10 lbs
36785.0 g / 360.9 N
|
Table 4: Steel thickness (saturation) - sheet metal selection
MPL 80x40x15 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.45 kg / 5.41 lbs
2452.3 g / 24.1 N
|
| 1 mm |
|
6.13 kg / 13.52 lbs
6130.8 g / 60.1 N
|
| 2 mm |
|
12.26 kg / 27.03 lbs
12261.7 g / 120.3 N
|
| 3 mm |
|
18.39 kg / 40.55 lbs
18392.5 g / 180.4 N
|
| 5 mm |
|
30.65 kg / 67.58 lbs
30654.2 g / 300.7 N
|
| 10 mm |
|
61.31 kg / 135.16 lbs
61308.3 g / 601.4 N
|
| 11 mm |
|
67.44 kg / 148.68 lbs
67439.2 g / 661.6 N
|
| 12 mm |
|
73.57 kg / 162.19 lbs
73570.0 g / 721.7 N
|
Table 5: Thermal stability (material behavior) - thermal limit
MPL 80x40x15 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
73.57 kg / 162.19 lbs
73570.0 g / 721.7 N
|
OK |
| 40 °C | -2.2% |
71.95 kg / 158.63 lbs
71951.5 g / 705.8 N
|
OK |
| 60 °C | -4.4% |
70.33 kg / 155.06 lbs
70332.9 g / 690.0 N
|
|
| 80 °C | -6.6% |
68.71 kg / 151.49 lbs
68714.4 g / 674.1 N
|
|
| 100 °C | -28.8% |
52.38 kg / 115.48 lbs
52381.8 g / 513.9 N
|
Table 6: Magnet-Magnet interaction (repulsion) - forces in the system
MPL 80x40x15 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
161.08 kg / 355.13 lbs
4 384 Gs
|
24.16 kg / 53.27 lbs
24163 g / 237.0 N
|
N/A |
| 1 mm |
156.77 kg / 345.63 lbs
5 638 Gs
|
23.52 kg / 51.84 lbs
23516 g / 230.7 N
|
141.10 kg / 311.07 lbs
~0 Gs
|
| 2 mm |
152.27 kg / 335.70 lbs
5 556 Gs
|
22.84 kg / 50.36 lbs
22841 g / 224.1 N
|
137.05 kg / 302.13 lbs
~0 Gs
|
| 3 mm |
147.69 kg / 325.60 lbs
5 472 Gs
|
22.15 kg / 48.84 lbs
22153 g / 217.3 N
|
132.92 kg / 293.04 lbs
~0 Gs
|
| 5 mm |
138.36 kg / 305.04 lbs
5 297 Gs
|
20.75 kg / 45.76 lbs
20754 g / 203.6 N
|
124.53 kg / 274.53 lbs
~0 Gs
|
| 10 mm |
115.08 kg / 253.71 lbs
4 830 Gs
|
17.26 kg / 38.06 lbs
17262 g / 169.3 N
|
103.57 kg / 228.34 lbs
~0 Gs
|
| 20 mm |
74.49 kg / 164.22 lbs
3 886 Gs
|
11.17 kg / 24.63 lbs
11174 g / 109.6 N
|
67.04 kg / 147.80 lbs
~0 Gs
|
| 50 mm |
17.20 kg / 37.91 lbs
1 867 Gs
|
2.58 kg / 5.69 lbs
2580 g / 25.3 N
|
15.48 kg / 34.12 lbs
~0 Gs
|
| 60 mm |
10.70 kg / 23.59 lbs
1 473 Gs
|
1.60 kg / 3.54 lbs
1605 g / 15.7 N
|
9.63 kg / 21.23 lbs
~0 Gs
|
| 70 mm |
6.78 kg / 14.94 lbs
1 172 Gs
|
1.02 kg / 2.24 lbs
1017 g / 10.0 N
|
6.10 kg / 13.45 lbs
~0 Gs
|
| 80 mm |
4.38 kg / 9.65 lbs
942 Gs
|
0.66 kg / 1.45 lbs
657 g / 6.4 N
|
3.94 kg / 8.69 lbs
~0 Gs
|
| 90 mm |
2.89 kg / 6.36 lbs
765 Gs
|
0.43 kg / 0.95 lbs
433 g / 4.2 N
|
2.60 kg / 5.72 lbs
~0 Gs
|
| 100 mm |
1.94 kg / 4.27 lbs
627 Gs
|
0.29 kg / 0.64 lbs
291 g / 2.9 N
|
1.74 kg / 3.84 lbs
~0 Gs
|
Table 7: Hazards (electronics) - warnings
MPL 80x40x15 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 26.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 20.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 16.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 12.5 cm |
| Car key | 50 Gs (5.0 mT) | 11.5 cm |
| Payment card | 400 Gs (40.0 mT) | 4.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 3.5 cm |
Table 8: Collisions (cracking risk) - collision effects
MPL 80x40x15 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
18.11 km/h
(5.03 m/s)
|
4.56 J | |
| 30 mm |
25.99 km/h
(7.22 m/s)
|
9.38 J | |
| 50 mm |
32.48 km/h
(9.02 m/s)
|
14.65 J | |
| 100 mm |
45.61 km/h
(12.67 m/s)
|
28.89 J |
Table 9: Coating parameters (durability)
MPL 80x40x15 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 80x40x15 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 94 833 Mx | 948.3 µWb |
| Pc Coefficient | 0.33 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 80x40x15 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 73.57 kg | Standard |
| Water (riverbed) |
84.24 kg
(+10.67 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Note: On a vertical wall, the magnet holds just approx. 20-30% of its perpendicular strength.
2. Steel saturation
*Thin steel (e.g. computer case) significantly reduces the holding force.
3. Temperature resistance
*For N38 grade, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.33
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View also offers
Pros as well as cons of rare earth magnets.
Benefits
- They retain attractive force for nearly ten years – the drop is just ~1% (in theory),
- Magnets effectively protect themselves against demagnetization caused by ambient magnetic noise,
- A magnet with a metallic silver surface has an effective appearance,
- Magnets possess very high magnetic induction on the active area,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
- Possibility of custom machining as well as modifying to atypical requirements,
- Significant place in modern industrial fields – they serve a role in mass storage devices, electric motors, medical devices, and other advanced devices.
- Thanks to efficiency per cm³, small magnets offer high operating force, with minimal size,
Weaknesses
- Brittleness is one of their disadvantages. Upon intense impact they can break. We advise keeping them in a strong case, which not only secures them against impacts but also increases their durability
- When exposed to high temperature, neodymium magnets experience a drop in strength. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic or other material immune to moisture, when using outdoors
- Due to limitations in producing threads and complicated shapes in magnets, we recommend using a housing - magnetic holder.
- Possible danger related to microscopic parts of magnets can be dangerous, if swallowed, which gains importance in the context of child safety. Furthermore, small components of these products are able to complicate diagnosis medical in case of swallowing.
- Due to complex production process, their price is higher than average,
Holding force characteristics
Maximum holding power of the magnet – what it depends on?
- using a sheet made of mild steel, serving as a circuit closing element
- whose thickness reaches at least 10 mm
- characterized by smoothness
- with total lack of distance (without impurities)
- during pulling in a direction perpendicular to the mounting surface
- at standard ambient temperature
Lifting capacity in real conditions – factors
- Air gap (between the magnet and the metal), as even a very small distance (e.g. 0.5 mm) can cause a decrease in lifting capacity by up to 50% (this also applies to varnish, rust or dirt).
- Loading method – catalog parameter refers to detachment vertically. When slipping, the magnet holds significantly lower power (typically approx. 20-30% of nominal force).
- Plate thickness – insufficiently thick steel causes magnetic saturation, causing part of the flux to be lost to the other side.
- Material composition – not every steel reacts the same. High carbon content worsen the attraction effect.
- Plate texture – ground elements ensure maximum contact, which increases field saturation. Rough surfaces weaken the grip.
- Thermal factor – hot environment weakens pulling force. Exceeding the limit temperature can permanently damage the magnet.
Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under parallel forces the load capacity is reduced by as much as fivefold. Additionally, even a slight gap between the magnet and the plate lowers the load capacity.
Safety rules for work with NdFeB magnets
Magnetic media
Avoid bringing magnets near a wallet, computer, or screen. The magnetism can irreversibly ruin these devices and wipe information from cards.
Phone sensors
GPS units and mobile phones are extremely sensitive to magnetic fields. Direct contact with a strong magnet can decalibrate the internal compass in your phone.
Conscious usage
Exercise caution. Rare earth magnets attract from a distance and connect with massive power, often faster than you can move away.
Fragile material
Despite metallic appearance, neodymium is delicate and cannot withstand shocks. Do not hit, as the magnet may crumble into sharp, dangerous pieces.
Operating temperature
Keep cool. NdFeB magnets are sensitive to heat. If you require resistance above 80°C, inquire about special high-temperature series (H, SH, UH).
Nickel allergy
Medical facts indicate that the nickel plating (standard magnet coating) is a strong allergen. If your skin reacts to metals, refrain from touching magnets with bare hands and opt for versions in plastic housing.
This is not a toy
Only for adults. Tiny parts can be swallowed, causing serious injuries. Keep away from children and animals.
Serious injuries
Big blocks can crush fingers in a fraction of a second. Do not put your hand betwixt two attracting surfaces.
Mechanical processing
Fire hazard: Neodymium dust is explosive. Avoid machining magnets in home conditions as this risks ignition.
Danger to pacemakers
Patients with a ICD should keep an large gap from magnets. The magnetic field can disrupt the functioning of the life-saving device.
