tel: +48 888 99 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our proposal. Practically all "magnets" on our website are in stock for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in solid and airtight steel enclosure are ideally suited for use in variable and difficult climate conditions, including in the rain and snow see...

magnets with holders

Holders with magnets can be applied to facilitate manufacturing, underwater discoveries, or locating meteorites from gold see...

Shipping is always shipped on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 80x40x15 / N38 - lamellar magnet

lamellar magnet

Catalog no 020177

GTIN: 5906301811831

5

length [±0,1 mm]

80 mm

Width [±0,1 mm]

40 mm

Height [±0,1 mm]

15 mm

Weight

360 g

Magnetization Direction

↑ axial

Load capacity

67.01 kg / 657.14 N

Magnetic Induction

285.78 mT

Coating

[NiCuNi] nickel

160.00 with VAT / pcs + price for transport

130.08 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
130.08 ZŁ
160.00 ZŁ
price from 600 pcs
122.28 ZŁ
150.40 ZŁ
price from 2200 pcs
114.47 ZŁ
140.80 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 80x40x15 / N38 - lamellar magnet

Specification/characteristics MPL 80x40x15 / N38 - lamellar magnet
properties
values
Cat. no.
020177
GTIN
5906301811831
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
80 mm [±0,1 mm]
Width
40 mm [±0,1 mm]
Height
15 mm [±0,1 mm]
Weight
360 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
67.01 kg / 657.14 N
Magnetic Induction ~ ?
285.78 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets min. MPL 80x40x15 / N38 are magnets created from neodymium in a flat form. They are appreciated for their exceptionally potent magnetic properties, which surpass traditional iron magnets.
Thanks to their mighty power, flat magnets are regularly applied in structures that require exceptional adhesion.
Typical temperature resistance of flat magnets is 80 °C, but with larger dimensions, this value rises.
Additionally, flat magnets often have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, to increase their corrosion resistance.
The magnet named MPL 80x40x15 / N38 i.e. a magnetic strength 67.01 kg which weighs just 360 grams, making it the excellent choice for projects needing a flat magnet.
Neodymium flat magnets offer a range of advantages compared to other magnet shapes, which cause them being an ideal choice for many applications:
Contact surface: Due to their flat shape, flat magnets guarantee a larger contact surface with adjacent parts, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: They are often used in various devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is important for their operation.
Mounting: The flat form's flat shape makes it easier mounting, particularly when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows creators greater flexibility in arranging them in structures, which can be more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet can offer better stability, minimizing the risk of sliding or rotating. However, one should remember that the optimal shape of the magnet depends on the specific project and requirements. In certain cases, other shapes, like cylindrical or spherical, are a better choice.
Attracted by magnets are objects made of ferromagnetic materials, such as iron elements, objects containing nickel, cobalt and alloys of metals with magnetic properties. Additionally, magnets may lesser affect alloys containing iron, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
The operation of magnets is based on the properties of the magnetic field, which is generated by the movement of electric charges within their material. Magnetic fields of these objects creates attractive interactions, which attract objects made of nickel or other ferromagnetic substances.

Magnets have two main poles: north (N) and south (S), which attract each other when they are different. Poles of the same kind, e.g. two north poles, repel each other.
Due to these properties, magnets are often used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them ideal for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the materials used.
Magnets do not attract plastic, glass, wooden materials or precious stones. Additionally, magnets do not affect certain metals, such as copper items, aluminum materials, items made of gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless exposed to a very strong magnetic field.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as compasses, credit cards and even electronic devices sensitive to magnetic fields. Therefore, it is important to avoid placing magnets near such devices.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their strength decreases by only ~1% (theoretically),
  • They are extremely resistant to demagnetization by external magnetic sources,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
  • Significant importance in modern technologies – are utilized in hard drives, electric motors, medical apparatus or very highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Health risk arising from small pieces of magnets are risky, in case of ingestion, which becomes significant in the context of children's health. Additionally, miniscule components of these devices have the potential to be problematic in medical diagnosis after entering the body.

Be Cautious with Neodymium Magnets

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will bounce and also clash together within a distance of several to almost 10 cm from each other.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can surprise you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Magnets made of neodymium are known for being fragile, which can cause them to become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

 Keep neodymium magnets away from children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98