MPL 80x40x15 / N38 - lamellar magnet
lamellar magnet
Catalog no 020177
GTIN: 5906301811831
length [±0,1 mm]
80 mm
Width [±0,1 mm]
40 mm
Height [±0,1 mm]
15 mm
Weight
360 g
Magnetization Direction
↑ axial
Load capacity
67.01 kg / 657.14 N
Magnetic Induction
285.78 mT
Coating
[NiCuNi] nickel
139.54 ZŁ with VAT / pcs + price for transport
113.45 ZŁ net + 23% VAT / pcs
76.44 ZŁ net was the lowest price in the last 30 days
bulk discounts:
Need more?Hunting for a discount?
Pick up the phone and ask
+48 888 99 98 98
alternatively contact us using
inquiry form
the contact form page.
Strength and appearance of a magnet can be tested with our
magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
MPL 80x40x15 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Thanks to their mighty power, flat magnets are commonly used in products that need exceptional adhesion.
The standard temperature resistance of flat magnets is 80°C, but with larger dimensions, this value rises.
In addition, flat magnets commonly have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, to increase their strength.
The magnet named MPL 80x40x15 / N38 and a lifting capacity of 67.01 kg weighing just 360 grams, making it the perfect choice for applications requiring a flat shape.
Contact surface: Due to their flat shape, flat magnets guarantee a greater contact surface with other components, which can be beneficial in applications needing a stronger magnetic connection.
Technology applications: These are often applied in many devices, such as sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: This form's flat shape makes it easier mounting, particularly when it is necessary to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows designers greater flexibility in arranging them in structures, which is more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet can provide better stability, reducing the risk of sliding or rotating. However, one should remember that the optimal shape of the magnet is dependent on the given use and requirements. In certain cases, other shapes, such as cylindrical or spherical, may be more appropriate.
Magnets have two poles: north (N) and south (S), which interact with each other when they are different. Poles of the same kind, such as two north poles, act repelling on each other.
Due to these properties, magnets are often used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them ideal for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the material it is made of.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards or medical equipment, like pacemakers. For this reason, it is important to exercise caution when using magnets.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their exceptional field intensity, neodymium magnets offer the following advantages:
- Their magnetic field is durable, and after approximately 10 years, it drops only by ~1% (according to research),
- They are very resistant to demagnetization caused by external field interference,
- Thanks to the glossy finish and silver coating, they have an visually attractive appearance,
- The outer field strength of the magnet shows elevated magnetic properties,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for accurate shaping or adaptation to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
- Key role in cutting-edge sectors – they are used in HDDs, electric motors, clinical machines as well as technologically developed systems,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to shocks, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks and enhances its overall durability,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to damp air can corrode. Therefore, for outdoor applications, we recommend waterproof types made of rubber,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing fine shapes directly in the magnet,
- Health risk related to magnet particles may arise, in case of ingestion, which is important in the family environments. Additionally, tiny components from these products can disrupt scanning if inside the body,
- In cases of tight budgets, neodymium magnet cost is a challenge,
Maximum lifting capacity of the magnet – what it depends on?
The given holding capacity of the magnet represents the highest holding force, measured under optimal conditions, specifically:
- with the use of low-carbon steel plate acting as a magnetic yoke
- with a thickness of minimum 10 mm
- with a smooth surface
- with no separation
- with vertical force applied
- at room temperature
Magnet lifting force in use – key factors
Practical lifting force is dependent on factors, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under parallel forces the holding force is lower. Additionally, even a minimal clearance {between} the magnet’s surface and the plate decreases the holding force.
We Recommend Caution with Neodymium Magnets
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are highly susceptible to damage, leading to breaking.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Keep neodymium magnets away from youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
If you have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or a fracture.
Keep neodymium magnets away from the wallet, computer, and TV.
Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Exercise caution!
To show why neodymium magnets are so dangerous, read the article - How dangerous are very strong neodymium magnets?.