e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our proposal. All magnesy neodymowe in our store are available for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in airtight and durable steel casing are ideally suited for use in difficult, demanding weather, including during rain and snow more information...

magnets with holders

Holders with magnets can be applied to facilitate manufacturing, exploring underwater areas, or searching for meteorites made of metal more...

We promise to ship ordered magnets on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 25x8x20 / N38 - ring magnet

ring magnet

Catalog no 030450

GTIN: 5906301812340

5

Diameter [±0,1 mm]

25 mm

internal diameter Ø [±0,1 mm]

8 mm

Height [±0,1 mm]

20 mm

Weight

80.11 g

Magnetization Direction

↑ axial

Load capacity

8.55 kg / 83.85 N

Magnetic Induction

81.51 mT

Coating

[NiCuNi] nickel

41.71 with VAT / pcs + price for transport

33.91 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
33.91 ZŁ
41.71 ZŁ
price from 20 pcs
31.88 ZŁ
39.21 ZŁ
price from 80 pcs
29.84 ZŁ
36.70 ZŁ

Hunting for a discount?

Call us +48 888 99 98 98 otherwise get in touch through form the contact form page.
Weight and structure of neodymium magnets can be analyzed on our our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

MP 25x8x20 / N38 - ring magnet

Specification/characteristics MP 25x8x20 / N38 - ring magnet
properties
values
Cat. no.
030450
GTIN
5906301812340
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
25 mm [±0,1 mm]
internal diameter Ø
8 mm [±0,1 mm]
Height
20 mm [±0,1 mm]
Weight
80.11 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
8.55 kg / 83.85 N
Magnetic Induction ~ ?
81.51 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium magnets MP 25x8x20 / N38 in a ring form are regularly used in various industries due to their specific properties. Thanks to a powerful magnetic field of 8.55 kg, which can be described as force, they are very helpful in applications that require strong magnetism in a compact space. Applications of MP 25x8x20 / N38 magnets include electrical mechanisms, generators, audio systems, and numerous other devices that use magnets for generating motion or energy storage. Despite their significant strength, they have a comparatively low weight of 80.11 grams, which makes them more convenient to use compared to bulkier alternatives.
Ring magnets work due to their atomic structure. Their properties arise from a controlled production process, including sintering and magnetization, which allows for generating a strong and precise magnetic field. This makes them perfect for devices such as stepper motors or industrial robots. Additionally, their resistance to high temperatures and demagnetization makes them indispensable in industry.
They are used in various fields of technology and industry, such as electronics, e.g., in the production of speakers or electric motors, the automotive industry, e.g., in the construction of electric motors, and medical equipment, e.g., in scanning devices. Thanks to their temperature resistance and precision makes them indispensable in challenging industrial conditions.
Their uniqueness comes from extraordinary pulling power, resistance to high temperatures, precise control of the magnetic field. Thanks to their ring shape allows for application in devices requiring concentrated magnetic fields. Moreover, these magnets are significantly stronger and more versatile than ferrite counterparts, which has made them popular in advanced technologies and industrial applications.
Ring magnets perform excellently across a wide range of temperatures. Their magnetic properties remain stable, until the Curie temperature is exceeded, which for neodymium magnets is around 80°C. Compared to other types of magnets, ring magnets show greater resistance to demagnetization. Because of this, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.
A neodymium ring magnet with classification N50 and N52 is a powerful and highly strong metallic component shaped like a ring, that provides high force and universal application. Competitive price, fast shipping, resistance and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They retain their full power for almost 10 years – the loss is just ~1% (according to analyses),
  • They remain magnetized despite exposure to magnetic surroundings,
  • Thanks to the shiny finish and nickel coating, they have an elegant appearance,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • The ability for custom shaping or adaptation to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
  • Wide application in modern technologies – they are utilized in HDDs, electromechanical systems, clinical machines or even high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them ideal in small systems

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to physical collisions, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall robustness,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of plastic,
  • Limited ability to create precision features in the magnet – the use of a mechanical support is recommended,
  • Possible threat from tiny pieces may arise, when consumed by mistake, which is significant in the protection of children. Moreover, minuscule fragments from these products might complicate medical imaging after being swallowed,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Maximum holding power of the magnet – what affects it?

The given holding capacity of the magnet corresponds to the highest holding force, assessed under optimal conditions, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a polished side
  • in conditions of no clearance
  • in a perpendicular direction of force
  • in normal thermal conditions

Magnet lifting force in use – key factors

In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under perpendicular forces, however under parallel forces the load capacity is reduced by as much as 5 times. Moreover, even a minimal clearance {between} the magnet and the plate decreases the lifting capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets are the strongest magnets ever created, and their strength can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If you have a finger between or alternatively on the path of attracting magnets, there may be a large cut or a fracture.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Magnets made of neodymium are incredibly delicate, they easily crack and can crumble.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Warning!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98