MPL 7x7x3 / N38 - lamellar magnet
lamellar magnet
Catalog no 020176
GTIN: 5906301811824
length [±0,1 mm]
7 mm
Width [±0,1 mm]
7 mm
Height [±0,1 mm]
3 mm
Weight
1.1 g
Magnetization Direction
↑ axial
Load capacity
1.66 kg / 16.28 N
Magnetic Induction
376.99 mT
Coating
[NiCuNi] nickel
0.47 ZŁ with VAT / pcs + price for transport
0.38 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate the price?
Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.
Orders placed by 14:00 are shipped the same day.
MPL 7x7x3 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Thanks to their mighty power, flat magnets are regularly applied in products that need exceptional adhesion.
Most common temperature resistance of these magnets is 80 °C, but depending on the dimensions, this value grows.
In addition, flat magnets commonly have special coatings applied to their surfaces, such as nickel, gold, or chrome, for enhancing their durability.
The magnet labeled MPL 7x7x3 / N38 and a magnetic force 1.66 kg which weighs a mere 1.1 grams, making it the perfect choice for applications requiring a flat shape.
Contact surface: Thanks to their flat shape, flat magnets ensure a greater contact surface with adjacent parts, which can be beneficial in applications requiring a stronger magnetic connection.
Technology applications: These magnets are often used in different devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is crucial for their operation.
Mounting: Their flat shape simplifies mounting, especially when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows creators greater flexibility in arranging them in structures, which is more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet can offer better stability, reducing the risk of shifting or rotating. It’s important to keep in mind that the optimal shape of the magnet is dependent on the specific application and requirements. In some cases, other shapes, such as cylindrical or spherical, may be a better choice.
Magnets have two poles: north (N) and south (S), which attract each other when they are oppositely oriented. Poles of the same kind, e.g. two north poles, act repelling on each other.
Due to these properties, magnets are often used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the material it is made of.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards and even electronic devices sensitive to magnetic fields. For this reason, it is important to avoid placing magnets near such devices.
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to immense strength, neodymium magnets have the following advantages:
- They do not lose strength over time - after about 10 years, their power decreases by only ~1% (theoretically),
- They are highly resistant to demagnetization by external magnetic sources,
- In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an visually attractive appearance,
- They exhibit extremely high magnetic induction on the surface of the magnet,
- By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
- The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
- Key role in advanced technologically fields – are used in hard drives, electric motors, medical devices or other advanced devices.
Disadvantages of neodymium magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
- They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
- They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
- The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
- Possible danger to health from tiny fragments of magnets can be dangerous, when accidentally ingested, which is particularly important in the context of child safety. It's also worth noting that miniscule components of these products can hinder the diagnostic process when they are in the body.
Notes with Neodymium Magnets
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
It is essential to maintain neodymium magnets away from youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are particularly fragile, resulting in damage.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to insert fingers between magnets or in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can demagnetize at high temperatures.
Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Exercise caution!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.