SM 32x450 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130303
GTIN: 5906301812968
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
450 mm
Weight
2410 g
1 340.70 ZŁ with VAT / pcs + price for transport
1 090.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure where to buy?
Pick up the phone and ask
+48 888 99 98 98
or send us a note via
our online form
the contact section.
Weight as well as structure of a magnet can be reviewed using our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
SM 32x450 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They retain their magnetic properties for almost ten years – the drop is just ~1% (according to analyses),
- Their ability to resist magnetic interference from external fields is impressive,
- By applying a reflective layer of nickel, the element gains a sleek look,
- The outer field strength of the magnet shows remarkable magnetic properties,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which expands their usage potential,
- Significant impact in new technology industries – they are used in data storage devices, electric motors, clinical machines or even sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which makes them ideal in small systems
Disadvantages of NdFeB magnets:
- They may fracture when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall strength,
- They lose strength at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to moisture can corrode. Therefore, for outdoor applications, it's best to use waterproof types made of rubber,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is restricted,
- Potential hazard related to magnet particles may arise, if ingested accidentally, which is crucial in the context of child safety. Additionally, minuscule fragments from these products may disrupt scanning after being swallowed,
- Due to the price of neodymium, their cost is considerably higher,
Maximum lifting force for a neodymium magnet – what affects it?
The given strength of the magnet corresponds to the optimal strength, assessed under optimal conditions, namely:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a smooth surface
- with no separation
- under perpendicular detachment force
- in normal thermal conditions
Impact of factors on magnetic holding capacity in practice
Practical lifting force is determined by elements, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under parallel forces the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet’s surface and the plate reduces the holding force.
Be Cautious with Neodymium Magnets
Neodymium magnets can become demagnetized at high temperatures.
Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets should not be near people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets are not toys, children should not play with them.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnetic are especially fragile, resulting in shattering.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets will crack or crumble with uncontrolled joining to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them very strongly.
Neodymium magnets are the most powerful magnets ever invented. Their power can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Pay attention!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.