e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. All magnesy in our store are available for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for water searching F300 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in airtight and durable steel casing are perfect for use in difficult, demanding weather conditions, including during rain and snow more...

magnetic holders

Holders with magnets can be applied to enhance manufacturing, exploring underwater areas, or locating space rocks made of metal see more...

Enjoy shipping of your order on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x450 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130303

GTIN: 5906301812968

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

450 mm

Weight

2410 g

1340.70 with VAT / pcs + price for transport

1090.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1090.00 ZŁ
1340.70 ZŁ
price from 5 pcs
981.00 ZŁ
1206.63 ZŁ

Need help making a decision?

Give us a call +48 888 99 98 98 or contact us via form the contact section.
Weight along with shape of magnets can be estimated on our magnetic calculator.

Same-day shipping for orders placed before 14:00.

SM 32x450 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x450 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130303
GTIN
5906301812968
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
450 mm [±0,1 mm]
Weight
2410 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are placed in a casing made of stainless steel usually AISI304. Due to this, it is possible to efficiently remove ferromagnetic particles from different substances. A key aspect of its operation is the use of repulsion of magnetic poles N and S, which enables magnetic substances to be targeted. The thickness of the magnet and its structure's pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators serve to separate ferromagnetic particles. If the cans are made from ferromagnetic materials, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are used in food production to remove metallic contaminants, for example iron fragments or iron dust. Our rods are constructed from durable acid-resistant steel, AISI 304, suitable for use in food.
Magnetic rollers, often called magnetic separators, find application in metal separation, food production as well as recycling. They help in extracting iron dust during the process of separating metals from other wastes.
Our magnetic rollers are built with a neodymium magnet embedded in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded holes - 18 mm, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in materials, N42 as well as N52.
Often it is believed that the stronger the magnet, the more effective. However, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be short. On the other hand, when the magnet is thick, the force lines are longer and extend over a greater distance.
For making the casings of magnetic separators - rollers, frequently stainless steel is employed, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, type AISI 316 steel is highly recommended thanks to its outstanding corrosion resistance.
Magnetic rollers stand out for their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other separators that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. On the other hand, among the drawbacks, one can mention the requirement for frequent cleaning, greater weight, and potential installation difficulties.
For proper maintenance of neodymium magnetic rollers, you should regularly cleaning them from contaminants, avoiding high temperatures above 80 degrees, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and lose their power. Testing of the rollers is recommended be carried out once every 24 months. Caution should be taken during use, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They have unchanged lifting capacity, and over around ten years their performance decreases symbolically – ~1% (in testing),
  • They show strong resistance to demagnetization from external magnetic fields,
  • In other words, due to the glossy silver coating, the magnet obtains an aesthetic appearance,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • With the option for tailored forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
  • Key role in advanced technical fields – they are utilized in HDDs, electromechanical systems, diagnostic apparatus or even other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which makes them ideal in miniature devices

Disadvantages of magnetic elements:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to external force, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall durability,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a wet environment. For outdoor use, we recommend using encapsulated magnets, such as those made of rubber,
  • Limited ability to create complex details in the magnet – the use of a magnetic holder is recommended,
  • Possible threat due to small fragments may arise, especially if swallowed, which is notable in the health of young users. It should also be noted that small elements from these products might hinder health screening when ingested,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Breakaway strength of the magnet in ideal conditionswhat affects it?

The given pulling force of the magnet means the maximum force, assessed in a perfect environment, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with zero air gap
  • with vertical force applied
  • at room temperature

Practical lifting capacity: influencing factors

In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under parallel forces the holding force is lower. Additionally, even a minimal clearance {between} the magnet’s surface and the plate reduces the lifting capacity.

Handle with Care: Neodymium Magnets

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a serious injury may occur. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

 It is important to maintain neodymium magnets out of reach from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are extremely delicate, they easily fall apart as well as can become damaged.

Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Warning!

In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98