e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our offer. All "neodymium magnets" in our store are in stock for immediate purchase (see the list). Check out the magnet price list for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to buy strong neodymium magnet? Magnet holders in airtight, solid steel casing are ideally suited for use in difficult, demanding climate conditions, including in the rain and snow check...

magnetic holders

Magnetic holders can be applied to facilitate manufacturing, underwater discoveries, or searching for space rocks from gold see...

We promise to ship your order if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x450 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130303

GTIN: 5906301812968

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

450 mm

Weight

2410 g

1 340.70 with VAT / pcs + price for transport

1 090.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1 090.00 ZŁ
1 340.70 ZŁ
price from 5 pcs
981.00 ZŁ
1 206.63 ZŁ

Not sure where to buy?

Pick up the phone and ask +48 888 99 98 98 or send us a note via our online form the contact section.
Weight as well as structure of a magnet can be reviewed using our modular calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 32x450 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x450 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130303
GTIN
5906301812968
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
450 mm [±0,1 mm]
Weight
2410 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are welded in a casing made of stainless steel mostly AISI304. Due to this, it is possible to efficiently remove ferromagnetic elements from other materials. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be targeted. The thickness of the magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic elements. If the cans are made from ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are employed in food production to clear metallic contaminants, such as iron fragments or iron dust. Our rods are constructed from durable acid-resistant steel, EN 1.4301, approved for contact with food.
Magnetic rollers, often called magnetic separators, find application in metal separation, food production as well as waste processing. They help in extracting iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are built with neodymium magnets embedded in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded holes - 18 mm, which enables simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars stand out in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the stronger the magnet, the better. Nevertheless, the value of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines will be more compressed. Otherwise, in the case of a thicker magnet, the force lines are extended and extend over a greater distance.
For creating the casings of magnetic separators - rollers, most often stainless steel is used, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, AISI 316 steel is recommended thanks to its outstanding corrosion resistance.
Magnetic bars are characterized by their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other separators that may utilize more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. On the other hand, among the drawbacks, one can mention the need for regular cleaning, higher cost, and potential installation challenges.
To properly maintain of neodymium magnetic rollers, it’s worth regularly cleaning them from deposits, avoiding high temperatures above 80 degrees, and protecting them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Testing of the rollers should be carried out every two years. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They retain their magnetic properties for almost ten years – the drop is just ~1% (according to analyses),
  • Their ability to resist magnetic interference from external fields is impressive,
  • By applying a reflective layer of nickel, the element gains a sleek look,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which expands their usage potential,
  • Significant impact in new technology industries – they are used in data storage devices, electric motors, clinical machines or even sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which makes them ideal in small systems

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall strength,
  • They lose strength at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to moisture can corrode. Therefore, for outdoor applications, it's best to use waterproof types made of rubber,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is restricted,
  • Potential hazard related to magnet particles may arise, if ingested accidentally, which is crucial in the context of child safety. Additionally, minuscule fragments from these products may disrupt scanning after being swallowed,
  • Due to the price of neodymium, their cost is considerably higher,

Maximum lifting force for a neodymium magnet – what affects it?

The given strength of the magnet corresponds to the optimal strength, assessed under optimal conditions, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with no separation
  • under perpendicular detachment force
  • in normal thermal conditions

Impact of factors on magnetic holding capacity in practice

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under parallel forces the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet’s surface and the plate reduces the holding force.

Be Cautious with Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnetic are especially fragile, resulting in shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will crack or crumble with uncontrolled joining to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them very strongly.

Neodymium magnets are the most powerful magnets ever invented. Their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Pay attention!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98