tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our proposal. All magnesy in our store are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnets for fishing F200 GOLD

Where to buy very strong magnet? Magnet holders in solid and airtight enclosure are ideally suited for use in difficult, demanding weather conditions, including snow and rain check...

magnets with holders

Magnetic holders can be applied to enhance production, exploring underwater areas, or searching for meteorites made of ore more information...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 6x6x6 / N38 - lamellar magnet

lamellar magnet

Catalog no 020175

GTIN: 5906301811817

5

length [±0,1 mm]

6 mm

Width [±0,1 mm]

6 mm

Height [±0,1 mm]

6 mm

Weight

1.62 g

Magnetization Direction

↑ axial

Load capacity

2.84 kg / 27.85 N

Magnetic Induction

539.50 mT

Coating

[NiCuNi] nickel

0.90 with VAT / pcs + price for transport

0.73 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.73 ZŁ
0.90 ZŁ
price from 900 pcs
0.69 ZŁ
0.85 ZŁ
price from 3500 pcs
0.64 ZŁ
0.79 ZŁ

Not sure which magnet to buy?

Pick up the phone and ask +48 22 499 98 98 if you prefer get in touch through contact form the contact page.
Parameters as well as shape of a neodymium magnet can be tested on our modular calculator.

Same-day processing for orders placed before 14:00.

MPL 6x6x6 / N38 - lamellar magnet

Specification/characteristics MPL 6x6x6 / N38 - lamellar magnet
properties
values
Cat. no.
020175
GTIN
5906301811817
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
6 mm [±0,1 mm]
Width
6 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
1.62 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
2.84 kg / 27.85 N
Magnetic Induction ~ ?
539.50 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets min. MPL 6x6x6 / N38 are magnets created from neodymium in a rectangular form. They are valued for their exceptionally potent magnetic properties, which outshine ordinary ferrite magnets.
Due to their power, flat magnets are commonly applied in products that need exceptional adhesion.
Typical temperature resistance of these magnets is 80°C, but depending on the dimensions, this value grows.
Additionally, flat magnets commonly have special coatings applied to their surfaces, such as nickel, gold, or chrome, to increase their strength.
The magnet named MPL 6x6x6 / N38 and a lifting capacity of 2.84 kg with a weight of only 1.62 grams, making it the ideal choice for projects needing a flat magnet.
Neodymium flat magnets present a range of advantages compared to other magnet shapes, which make them being the best choice for a multitude of projects:
Contact surface: Due to their flat shape, flat magnets guarantee a greater contact surface with other components, which can be beneficial in applications needing a stronger magnetic connection.
Technology applications: They are often used in different devices, such as sensors, stepper motors, or speakers, where the thin and wide shape is crucial for their operation.
Mounting: The flat form's flat shape simplifies mounting, particularly when it is necessary to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets gives the possibility designers greater flexibility in arranging them in structures, which is more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet can provide better stability, reducing the risk of sliding or rotating. However, it's important to note that the optimal shape of the magnet depends on the specific project and requirements. In some cases, other shapes, such as cylindrical or spherical, may be more appropriate.
Attracted by magnets are objects made of ferromagnetic materials, such as iron elements, objects containing nickel, cobalt or alloys of metals with magnetic properties. Additionally, magnets may lesser affect alloys containing iron, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
Magnets work thanks to the properties of their magnetic field, which is generated by the movement of electric charges within their material. Magnetic fields of magnets creates attractive interactions, which affect materials containing cobalt or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which attract each other when they are different. Poles of the same kind, such as two north poles, repel each other.
Due to these properties, magnets are commonly used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them ideal for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the materials used.
Not all materials react to magnets, and examples of such substances are plastics, glass, wood or precious stones. Furthermore, magnets do not affect most metals, such as copper items, aluminum materials, gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless exposed to a very strong magnetic field.
It should be noted that high temperatures can weaken the magnet's effect. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards or medical equipment, like pacemakers. Therefore, it is important to avoid placing magnets near such devices.
A neodymium plate magnet with classification N52 and N50 is a strong and extremely powerful magnetic product designed as a plate, providing high force and universal applicability. Very good price, 24h delivery, ruggedness and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They have unchanged lifting capacity, and over around ten years their performance decreases symbolically – ~1% (in testing),
  • They are extremely resistant to demagnetization caused by external magnetic sources,
  • Thanks to the polished finish and gold coating, they have an aesthetic appearance,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • The ability for custom shaping as well as adaptation to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
  • Important function in cutting-edge sectors – they find application in hard drives, electromechanical systems, medical equipment and sophisticated instruments,
  • Thanks to their power density, small magnets offer high magnetic performance, in miniature format,

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and enhances its overall robustness,
  • They lose magnetic force at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create complex details in the magnet – the use of a external casing is recommended,
  • Possible threat related to magnet particles may arise, if ingested accidentally, which is significant in the protection of children. It should also be noted that tiny components from these magnets can hinder health screening once in the system,
  • In cases of tight budgets, neodymium magnet cost may be a barrier,

Maximum lifting force for a neodymium magnet – what it depends on?

The given strength of the magnet means the optimal strength, determined in the best circumstances, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a polished side
  • in conditions of no clearance
  • under perpendicular detachment force
  • in normal thermal conditions

Impact of factors on magnetic holding capacity in practice

Practical lifting force is determined by factors, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate reduces the lifting capacity.

Caution with Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnetic are highly fragile, they easily break and can become damaged.

Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Keep neodymium magnets away from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a significant injury may occur. Magnets, depending on their size, are able even cut off a finger or there can be a severe pressure or even a fracture.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Exercise caution!

So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98