e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. Practically all "magnets" in our store are available for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to purchase powerful neodymium magnet? Magnet holders in airtight and durable steel casing are ideally suited for use in difficult, demanding climate conditions, including during snow and rain see more...

magnets with holders

Magnetic holders can be applied to improve manufacturing, exploring underwater areas, or searching for meteorites made of metal more...

We promise to ship ordered magnets on the same day by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available Ships tomorrow

SMZR 25x250 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140236

GTIN: 5906301813446

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

250 mm

Weight

0.01 g

676.50 with VAT / pcs + price for transport

550.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
550.00 ZŁ
676.50 ZŁ
price from 5 pcs
484.00 ZŁ
595.32 ZŁ

Want to negotiate?

Call us +48 888 99 98 98 or get in touch via our online form the contact section.
Specifications along with structure of a magnet can be analyzed using our power calculator.

Order by 14:00 and we’ll ship today!

SMZR 25x250 / N52 - magnetic separator with handle

Specification/characteristics SMZR 25x250 / N52 - magnetic separator with handle
properties
values
Cat. no.
140236
GTIN
5906301813446
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
250 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

It is an essential item in every scrap yard and waste sorting plant. Thanks to it, you can easily assess the value of scrap. It is also useful for extracting small steel elements from crates, ash, or sand.
The tool reacts to black steel but does not attract most stainless steels (austenitic). This is the simplest test to distinguish valuable non-ferrous metals from cheap steel.
Neodymium separators are much lighter and stronger than traditional ferrite ones. The strong neodymium field detects even weakly magnetic alloys. The neodymium version is currently the standard in professional scrap yards.
The neodymium magnet is enclosed in a solid metal housing (steel or brass). The handle is designed not to slip in the hand. The tool is durable and prepared for hard work.
It is a simple design without moving parts, so cleaning involves removing the scrap. We also offer versions where pulling the handle drops the collected material. In the case of strong magnets, it is easiest to slide the metal to the side of the housing.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • Their power is maintained, and after around 10 years, it drops only by ~1% (according to research),
  • They remain magnetized despite exposure to strong external fields,
  • Because of the reflective layer of gold, the component looks visually appealing,
  • They have exceptional magnetic induction on the surface of the magnet,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • The ability for accurate shaping and customization to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
  • Key role in cutting-edge sectors – they are used in hard drives, electromechanical systems, healthcare devices as well as other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which allows for use in compact constructions

Disadvantages of magnetic elements:

  • They can break when subjected to a strong impact. If the magnets are exposed to shocks, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture while also enhances its overall robustness,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of plastic for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing fine shapes directly in the magnet,
  • Health risk linked to microscopic shards may arise, in case of ingestion, which is notable in the protection of children. Additionally, tiny components from these magnets may hinder health screening once in the system,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Magnetic strength at its maximum – what contributes to it?

The given pulling force of the magnet corresponds to the maximum force, measured in ideal conditions, that is:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • at room temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet is determined by in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured using a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, in contrast under parallel forces the load capacity is reduced by as much as 5 times. Additionally, even a slight gap {between} the magnet and the plate decreases the lifting capacity.

Safety Guidelines with Neodymium Magnets

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Magnets, depending on their size, can even cut off a finger or alternatively there can be a serious pressure or a fracture.

Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can surprise you at first.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are highly delicate, they easily fall apart and can become damaged.

Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Exercise caution!

In order to illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98