SMZR 25x250 / N52 - magnetic separator with handle
magnetic separator with handle
Catalog no 140236
GTIN: 5906301813446
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
250 mm
Weight
0.01 g
676.50 ZŁ with VAT / pcs + price for transport
550.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Call us now
+48 888 99 98 98
otherwise drop us a message via
form
our website.
Parameters as well as appearance of magnets can be analyzed on our
magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
SMZR 25x250 / N52 - magnetic separator with handle
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their strong magnetism, neodymium magnets have these key benefits:
- They do not lose their even during around ten years – the reduction of power is only ~1% (theoretically),
- They protect against demagnetization induced by external magnetic influence very well,
- In other words, due to the glossy nickel coating, the magnet obtains an professional appearance,
- They have exceptional magnetic induction on the surface of the magnet,
- With the right combination of magnetic alloys, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
- Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which increases their application range,
- Wide application in cutting-edge sectors – they are used in data storage devices, electric motors, clinical machines as well as high-tech tools,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to external force, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time increases its overall robustness,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of protective material for outdoor use,
- Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
- Potential hazard linked to microscopic shards may arise, if ingested accidentally, which is crucial in the context of child safety. Additionally, miniature parts from these products might interfere with diagnostics once in the system,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Optimal lifting capacity of a neodymium magnet – what affects it?
The given pulling force of the magnet corresponds to the maximum force, assessed under optimal conditions, namely:
- with the use of low-carbon steel plate serving as a magnetic yoke
- with a thickness of minimum 10 mm
- with a refined outer layer
- with no separation
- with vertical force applied
- in normal thermal conditions
Magnet lifting force in use – key factors
The lifting capacity of a magnet is determined by in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under shearing force the load capacity is reduced by as much as fivefold. In addition, even a slight gap {between} the magnet’s surface and the plate lowers the load capacity.
Handle with Care: Neodymium Magnets
Magnets are not toys, children should not play with them.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Never bring neodymium magnets close to a phone and GPS.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or in their path when attract. Depending on how large the neodymium magnets are, they can lead to a cut or alternatively a fracture.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Magnets made of neodymium are incredibly fragile, they easily fall apart as well as can crumble.
Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Safety precautions!
So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.
