tel: +48 888 99 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our offer. All magnesy in our store are available for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnets for treasure hunters F400 GOLD

Where to purchase strong neodymium magnet? Magnet holders in airtight and durable steel casing are perfect for use in challenging weather, including during rain and snow check...

magnetic holders

Magnetic holders can be applied to improve production processes, underwater discoveries, or finding meteorites made of ore more...

Enjoy shipping of your order if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 450x180x70 [4x M8] - magnetic beam

magnetic beam

Catalog no 090219

GTIN: 5906301812548

5

length [±0,1 mm]

450 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

70 mm

Weight

28900 g

4734.89 with VAT / pcs + price for transport

3849.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3849.50 ZŁ
4734.89 ZŁ
price from 5 pcs
3618.53 ZŁ
4450.79 ZŁ

Want to talk magnets?

Pick up the phone and ask +48 22 499 98 98 otherwise send us a note using request form through our site.
Force and form of a magnet can be checked using our online calculation tool.

Same-day processing for orders placed before 14:00.

BM 450x180x70 [4x M8] - magnetic beam

Specification/characteristics BM 450x180x70 [4x M8] - magnetic beam
properties
values
Cat. no.
090219
GTIN
5906301812548
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
450 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
70 mm [±0,1 mm]
Weight
28900 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic beams are components mounted above conveyor systems, which are based on strong neodymium magnets to separate iron contaminants from the transported material. Metallic elements float up and attach to the bottom surface of the beam. Magnetic beams are widely used in the food industry, mineral raw materials and other industrial sectors.
The dimensions of the magnetic beam are tailored to the width of the belt and the magnetic field range. A larger cross-section allows the beam to be suspended higher above the belt. For instance, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, while for a layer of material over 8 cm, a larger beam is required. We also manufacture magnetic beams made to order according to customer requirements.
The basis of the magnetic beam’s operation are strong neodymium magnets, which generate a magnetic field attracting metal elements. This causes all metals in the transport to be captured and stopped. The beam can be mounted above the conveyor or set at an angle as a chute separator. The stainless steel housing protects the magnets, the device is durable and reliable in harsh industrial conditions.
These devices are used for removing any iron contaminants, such as metal balls, bolts and nuts, metal items, such as nails or keys. The range of the beam's action depends on its magnetic parameters and cross-section. Thanks to this, magnetic beams are effective in metal separation in industries such as recycling, food processing, and plastic processing.
Their application allows for the effective removal of iron contaminants from transported materials, which is crucial in industries such as food processing, recycling, plastic processing, and mineral raw materials. Equipped with neodymium magnets, these beams ensure high reliability and work efficiency. Moreover, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their superior holding force, neodymium magnets have these key benefits:

  • They retain their full power for almost 10 years – the loss is just ~1% (according to analyses),
  • They remain magnetized despite exposure to magnetic noise,
  • Thanks to the shiny finish and gold coating, they have an visually attractive appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
  • Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which broadens their functional possibilities,
  • Important function in advanced technical fields – they are used in hard drives, electric motors, clinical machines and other advanced devices,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They can break when subjected to a heavy impact. If the magnets are exposed to shocks, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and strengthens its overall durability,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a wet environment, especially when used outside, we recommend using waterproof magnets, such as those made of non-metallic materials,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing threads directly in the magnet,
  • Possible threat related to magnet particles may arise, when consumed by mistake, which is crucial in the context of child safety. It should also be noted that tiny components from these magnets may complicate medical imaging once in the system,
  • In cases of tight budgets, neodymium magnet cost is a challenge,

Detachment force of the magnet in optimal conditionswhat it depends on?

The given holding capacity of the magnet represents the highest holding force, measured under optimal conditions, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a polished side
  • with no separation
  • with vertical force applied
  • under standard ambient temperature

Lifting capacity in practice – influencing factors

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, however under parallel forces the lifting capacity is smaller. In addition, even a small distance {between} the magnet and the plate reduces the load capacity.

Precautions

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

  Do not give neodymium magnets to youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets are characterized by their fragility, which can cause them to become damaged.

Neodymium magnets are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If you have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or a fracture.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Exercise caution!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98