BM 450x180x70 [4x M8] - magnetic beam
magnetic beam
Catalog no 090219
GTIN: 5906301812548
length [±0,1 mm]
450 mm
Width [±0,1 mm]
180 mm
Height [±0,1 mm]
70 mm
Weight
28900 g
4734.89 ZŁ with VAT / pcs + price for transport
3849.50 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Give us a call
+48 22 499 98 98
if you prefer get in touch using
contact form
the contact form page.
Parameters along with form of magnetic components can be reviewed using our
magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
BM 450x180x70 [4x M8] - magnetic beam
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their notable magnetism, neodymium magnets have these key benefits:
- Their strength is maintained, and after around ten years, it drops only by ~1% (according to research),
- They protect against demagnetization induced by surrounding magnetic fields very well,
- Thanks to the shiny finish and silver coating, they have an aesthetic appearance,
- They exhibit superior levels of magnetic induction near the outer area of the magnet,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which broadens their application range,
- Wide application in modern technologies – they are used in HDDs, electromechanical systems, clinical machines and sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them useful in miniature devices
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a heavy impact. If the magnets are exposed to mechanical hits, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage while also strengthens its overall robustness,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to moisture can corrode. Therefore, for outdoor applications, we advise waterproof types made of non-metallic composites,
- Limited ability to create complex details in the magnet – the use of a external casing is recommended,
- Safety concern due to small fragments may arise, if ingested accidentally, which is significant in the family environments. Moreover, minuscule fragments from these devices may complicate medical imaging if inside the body,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Breakaway strength of the magnet in ideal conditions – what affects it?
The given lifting capacity of the magnet means the maximum lifting force, determined under optimal conditions, specifically:
- with mild steel, serving as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a smooth surface
- with no separation
- with vertical force applied
- under standard ambient temperature
Practical aspects of lifting capacity – factors
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the holding force.
Safety Precautions
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can demagnetize at high temperatures.
Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Neodymium magnets are especially fragile, resulting in damage.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Magnets are not toys, children should not play with them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a serious injury may occur. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a serious pressure or a fracture.
Pay attention!
To show why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.
