tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our store's offer. All magnesy neodymowe in our store are in stock for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to buy strong neodymium magnet? Magnet holders in airtight and durable steel casing are perfect for use in challenging weather conditions, including in the rain and snow see...

magnetic holders

Magnetic holders can be used to enhance production, exploring underwater areas, or finding meteors made of ore check...

We promise to ship ordered magnets on the same day before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 450x180x70 [4x M8] - magnetic beam

magnetic beam

Catalog no 090219

GTIN: 5906301812548

5

length [±0,1 mm]

450 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

70 mm

Weight

28900 g

4734.89 with VAT / pcs + price for transport

3849.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3849.50 ZŁ
4734.89 ZŁ
price from 5 pcs
3618.53 ZŁ
4450.79 ZŁ

Do you have a hard time selecting?

Give us a call +48 888 99 98 98 if you prefer drop us a message via inquiry form through our site.
Weight and shape of magnetic components can be estimated using our force calculator.

Orders placed before 14:00 will be shipped the same business day.

BM 450x180x70 [4x M8] - magnetic beam

Specification/characteristics BM 450x180x70 [4x M8] - magnetic beam
properties
values
Cat. no.
090219
GTIN
5906301812548
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
450 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
70 mm [±0,1 mm]
Weight
28900 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

A magnetic beam is a device mounted above conveyor belts, which use neodymium magnets to capture unwanted iron elements. Any metal parts are attracted to the underside of the beam. The use of such beams is particularly common in recycling, plastic processing and many other industries.
The dimensions of the magnetic beam are tailored to the width of the belt and the magnetic field range. The larger the cross-section of the beam, the greater the magnetic field range. For example, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, whereas for a layer of material over 8 cm, a larger beam is required. Custom-sized beams are available upon request.
The magnetic beam works due to the use of neodymium magnets, which generate a magnetic field attracting metal elements. Metal objects are lifted and attach to the underside of the beam. Mounted at the right angle, it can function as a chute separator. The stainless steel housing protects the magnets, the device is durable and reliable in harsh industrial conditions.
Magnetic beams effectively capture iron elements, such as balls with a diameter of 5-10 mm, bolts and nuts, metal items, such as nails or keys. The range of the beam's action depends on its magnetic parameters and cross-section. These devices are indispensable in many industrial sectors where removing iron contaminants is critical.
Their application allows for the effective removal of iron contaminants from transported materials, especially in industrial sectors requiring precise contaminant separation. Equipped with neodymium magnets, these beams guarantee effectiveness in challenging industrial conditions. Moreover, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They virtually do not lose power, because even after ten years, the performance loss is only ~1% (according to literature),
  • They show superior resistance to demagnetization from external magnetic fields,
  • By applying a reflective layer of silver, the element gains a sleek look,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
  • The ability for accurate shaping as well as adjustment to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
  • Significant impact in modern technologies – they are utilized in hard drives, rotating machines, medical equipment along with technologically developed systems,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally strengthens its overall durability,
  • They lose strength at elevated temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a humid environment. If exposed to rain, we recommend using sealed magnets, such as those made of non-metallic materials,
  • Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
  • Potential hazard due to small fragments may arise, in case of ingestion, which is crucial in the context of child safety. Additionally, small elements from these magnets may complicate medical imaging when ingested,
  • Due to a complex production process, their cost is considerably higher,

Maximum holding power of the magnet – what affects it?

The given strength of the magnet represents the optimal strength, determined in the best circumstances, that is:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • with vertical force applied
  • under standard ambient temperature

Lifting capacity in practice – influencing factors

In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the lifting capacity is smaller. Additionally, even a small distance {between} the magnet’s surface and the plate lowers the lifting capacity.

Be Cautious with Neodymium Magnets

Neodymium magnets are the most powerful magnets ever invented. Their power can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are highly susceptible to damage, leading to shattering.

Neodymium magnets are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

  Neodymium magnets should not be in the vicinity children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Magnets may crack or alternatively crumble with uncontrolled connecting to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Exercise caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98