tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. Practically all magnesy in our store are available for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnets for water searching F300 GOLD

Where to purchase powerful neodymium magnet? Holders with magnets in airtight, solid steel casing are excellent for use in difficult climate conditions, including during snow and rain read...

magnetic holders

Magnetic holders can be used to improve production processes, underwater discoveries, or finding space rocks from gold read...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 50x30x4 / N38 - lamellar magnet

lamellar magnet

Catalog no 020497

0

length [±0,1 mm]

50 mm

Width [±0,1 mm]

30 mm

Height [±0,1 mm]

4 mm

Weight

45 g

Magnetization Direction

↑ axial

Magnetic Induction

120.04 mT

Coating

[NiCuNi] nickel

25.83 with VAT / pcs + price for transport

21.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
21.00 ZŁ
25.83 ZŁ
price from 600 pcs
19.74 ZŁ
24.28 ZŁ
price from 2200 pcs
18.48 ZŁ
22.73 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 50x30x4 / N38 - lamellar magnet

Specification/characteristics MPL 50x30x4 / N38 - lamellar magnet
properties
values
Cat. no.
020497
Production/Distribution
Dhit sp. z o.o.
Country of origin
Polska / Chiny / Niemcy
Customs code
85059029
length
50 mm [±0,1 mm]
Width
30 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
45 g [±0,1 mm]
Magnetization Direction
↑ axial
Magnetic Induction ~ ?
120.04 mT
Coating
[NiCuNi] nickel
tolerancja wykonania
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets min. MPL 50x30x4 / N38 are magnets made from neodymium in a rectangular form. They are appreciated for their exceptionally potent magnetic properties, which surpass ordinary ferrite magnets.
Thanks to their high strength, flat magnets are regularly used in products that need very strong attraction.
Most common temperature resistance of flat magnets is 80°C, but with larger dimensions, this value rises.
In addition, flat magnets commonly have special coatings applied to their surfaces, such as nickel, gold, or chrome, for enhancing their durability.
The magnet with the designation MPL 50x30x4 / N38 i.e. a magnetic force ${capacity} kg which weighs a mere ${weight} grams, making it the ideal choice for applications requiring a flat shape.
Neodymium flat magnets offer a range of advantages compared to other magnet shapes, which cause them being a perfect solution for a multitude of projects:
Contact surface: Thanks to their flat shape, flat magnets ensure a larger contact surface with other components, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: They are often applied in various devices, e.g. sensors, stepper motors, or speakers, where the flat shape is necessary for their operation.
Mounting: The flat form's flat shape makes mounting, particularly when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows creators greater flexibility in arranging them in structures, which is more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet can provide better stability, minimizing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet depends on the specific application and requirements. In some cases, other shapes, like cylindrical or spherical, may be more appropriate.
Attracted by magnets are ferromagnetic materials, such as iron, objects containing nickel, materials with cobalt and special alloys of ferromagnetic metals. Additionally, magnets may lesser affect alloys containing iron, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
The operation of magnets is based on the properties of the magnetic field, which is generated by the movement of electric charges within their material. Magnetic fields of magnets creates attractive interactions, which affect materials containing nickel or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which attract each other when they are different. Similar poles, e.g. two north poles, repel each other.
Thanks to this principle of operation, magnets are often used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them ideal for applications requiring powerful magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the material it is made of.
Magnets do not attract plastic, glass, wooden materials and most gemstones. Moreover, magnets do not affect most metals, such as copper, aluminum materials, items made of gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless they are subjected to an extremely strong magnetic field.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards or medical equipment, like pacemakers. For this reason, it is important to exercise caution when using magnets.

Advantages and disadvantages of neodymium magnets

Neodymium magnets, also known as NdFeB magnets, are currently the strongest permanent magnets available on the market. Their exceptional magnetic properties make them suitable for various industries, technologies, and everyday life. Below are the key advantages:

  • Immense attractive force: Even small neodymium magnets generate a very strong magnetic field.
  • High coercivity: They are resistant to demagnetization by external magnetic fields.
  • Wide operating temperature range: Standard neodymium magnets operate up to 80°C, with special versions up to 230°C.
  • Variety of shapes and sizes: Available in many forms, making them easy to adapt to specific applications.
  • Relatively low price compared to strength: They offer the best strength-to-price ratio among all magnets.
  • Longevity: With proper use, they retain their magnetic properties for many years.
  • Versatility of applications: From electric motors to speakers, separators, toys, and jewelry.

Despite numerous advantages, neodymium magnets also have certain disadvantages to consider:

  • Brittleness: They are hard but brittle and prone to cracking or chipping upon impact.
  • Susceptibility to corrosion: They require a protective coating (e.g., nickel, zinc) to prevent rusting.
  • Limited operating temperature for standard versions: Above the Curie temperature, they lose their magnetic properties.
  • Strong magnetic field can be dangerous: They can damage electronics, magnetic cards, and pose a risk of attracting metal objects with great force.
  • Difficulties in mechanical processing: Due to their hardness and brittleness, processing them is complex.

Handle Neodymium Magnets with Caution

Neodymium magnets are known for being fragile, which can cause them to crumble.

Magnets made of neodymium are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

  Neodymium magnets should not be around children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

In the situation of holding a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98