e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our offer. Practically all "magnets" in our store are in stock for immediate delivery (check the list). Check out the magnet price list for more details check the magnet price list

Magnets for water searching F300 GOLD

Where to buy very strong neodymium magnet? Magnet holders in airtight and durable steel casing are ideally suited for use in difficult weather conditions, including in the rain and snow more...

magnets with holders

Magnetic holders can be applied to enhance production, exploring underwater areas, or finding space rocks made of metal read...

We promise to ship ordered magnets on the same day before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 18x150 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130271

GTIN: 5906301812739

0

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

150 mm

Weight

0.01 g

332.10 with VAT / pcs + price for transport

270.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
270.00 ZŁ
332.10 ZŁ
price from 9 pcs
256.50 ZŁ
315.50 ZŁ
price from 17 pcs
243.00 ZŁ
298.89 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

SM 18x150 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x150 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130271
GTIN
5906301812739
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
150 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, which are embedded in a casing made of stainless steel mostly AISI304. As a result, it is possible to efficiently segregate ferromagnetic particles from the mixture. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be collected. The thickness of the magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to separate ferromagnetic elements. If the cans are ferromagnetic, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers find application in the food sector to remove metallic contaminants, such as iron fragments or iron dust. Our rods are built from acid-resistant steel, AISI 304, intended for use in food.
Magnetic rollers, often called magnetic separators, find application in metal separation, food production as well as recycling. They help in removing iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers are composed of a neodymium magnet embedded in a tube of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded holes - 18 mm, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Often it is believed that the stronger the magnet, the more efficient it is. However, the strength of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and specific needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines are short. On the other hand, in the case of a thicker magnet, the force lines are extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, frequently stainless steel is employed, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, type AISI 316 steel is recommended thanks to its excellent corrosion resistance.
Magnetic rollers are characterized by their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other separators that may utilize more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators include amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, you should they should be regularly cleaned, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Testing of the rollers is recommended be carried out once every 24 months. Caution should be taken during use, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous magnetic power, neodymium magnets offer the following advantages:

  • Their strength is durable, and after around 10 years, it drops only by ~1% (theoretically),
  • They protect against demagnetization induced by surrounding electromagnetic environments effectively,
  • By applying a reflective layer of gold, the element gains a sleek look,
  • Magnetic induction on the surface of these magnets is notably high,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • The ability for accurate shaping or customization to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
  • Wide application in modern technologies – they are used in data storage devices, electromechanical systems, clinical machines along with sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them ideal in miniature devices

Disadvantages of magnetic elements:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to mechanical hits, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall resistance,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of rubber for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing fine shapes directly in the magnet,
  • Potential hazard linked to microscopic shards may arise, especially if swallowed, which is significant in the protection of children. Additionally, minuscule fragments from these magnets have the potential to hinder health screening when ingested,
  • Due to expensive raw materials, their cost is relatively high,

Safety Guidelines with Neodymium Magnets

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to insert fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, are able even cut off a finger or there can be a significant pressure or even a fracture.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Magnets made of neodymium are extremely delicate, they easily break and can crumble.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

  Magnets are not toys, children should not play with them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Warning!

In order to show why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98