tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our store's offer. All magnesy neodymowe in our store are in stock for immediate delivery (see the list). Check out the magnet price list for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to buy strong magnet? Magnet holders in solid and airtight steel enclosure are excellent for use in variable and difficult weather conditions, including during snow and rain more information...

magnets with holders

Magnetic holders can be applied to enhance production, exploring underwater areas, or searching for space rocks from gold check...

Enjoy delivery of your order on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 18x150 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130271

GTIN: 5906301812739

0

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

150 mm

Weight

0.01 g

332.10 with VAT / pcs + price for transport

270.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
270.00 ZŁ
332.10 ZŁ
price from 10 pcs
256.50 ZŁ
315.50 ZŁ
price from 20 pcs
243.00 ZŁ
298.89 ZŁ

Looking for a better price?

Give us a call +48 888 99 98 98 otherwise send us a note by means of contact form through our site.
Parameters along with shape of neodymium magnets can be reviewed on our magnetic calculator.

Same-day processing for orders placed before 14:00.

SM 18x150 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x150 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130271
GTIN
5906301812739
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
150 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, placed in a casing made of stainless steel mostly AISI304. Due to this, it is possible to precisely separate ferromagnetic elements from other materials. An important element of its operation is the use of repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be collected. The thickness of the magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic elements. If the cans are made from ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are employed in the food sector to remove metallic contaminants, for example iron fragments or iron dust. Our rods are built from durable acid-resistant steel, EN 1.4301, approved for use in food.
Magnetic rollers, often called magnetic separators, find application in metal separation, food production as well as waste processing. They help in extracting iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are built with neodymium magnets embedded in a tube made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, enabling quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in materials, N42 and N52.
Generally it is believed that the greater the magnet's power, the better. Nevertheless, the value of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and specific needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be short. On the other hand, in the case of a thicker magnet, the force lines are extended and reach further.
For constructing the casings of magnetic separators - rollers, usually stainless steel is used, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, type AISI 316 steel exhibits the best resistance due to its excellent anti-corrosion properties.
Magnetic rollers are characterized by their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other devices that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. Disadvantages may include the requirement for frequent cleaning, greater weight, and potential installation difficulties.
To properly maintain of neodymium magnetic rollers, it’s worth cleaning after each use, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and weaken. Testing of the rollers is recommended be carried out once every 24 months. Caution should be taken during use, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • Their strength is maintained, and after around ten years, it drops only by ~1% (according to research),
  • They are highly resistant to demagnetization caused by external magnetic sources,
  • The use of a polished nickel surface provides a eye-catching finish,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which increases their usage potential,
  • Important function in cutting-edge sectors – they serve a purpose in data storage devices, electromechanical systems, medical equipment or even other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and strengthens its overall robustness,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of synthetic coating for outdoor use,
  • Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
  • Potential hazard linked to microscopic shards may arise, if ingested accidentally, which is significant in the health of young users. It should also be noted that small elements from these magnets have the potential to complicate medical imaging after being swallowed,
  • In cases of mass production, neodymium magnet cost may be a barrier,

Maximum lifting force for a neodymium magnet – what affects it?

The given lifting capacity of the magnet means the maximum lifting force, determined in ideal conditions, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • in normal thermal conditions

Lifting capacity in real conditions – factors

In practice, the holding capacity of a magnet is affected by these factors, in descending order of importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured with the use of a polished steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, however under shearing force the load capacity is reduced by as much as 75%. Additionally, even a minimal clearance {between} the magnet and the plate lowers the load capacity.

Exercise Caution with Neodymium Magnets

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

In the situation of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

  Do not give neodymium magnets to youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Magnets made of neodymium are fragile and can easily crack and get damaged.

Neodymium magnets are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Caution!

To illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98