tel: +48 888 99 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our store's offer. All magnesy on our website are in stock for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnets for treasure hunters F200 GOLD

Where to purchase powerful neodymium magnet? Magnet holders in solid and airtight enclosure are perfect for use in difficult climate conditions, including snow and rain more information...

magnets with holders

Magnetic holders can be applied to improve production, exploring underwater areas, or locating space rocks from gold more...

Shipping is always shipped on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships tomorrow

SM 18x150 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130271

GTIN: 5906301812739

0

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

150 mm

Weight

0.01 g

332.10 with VAT / pcs + price for transport

270.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
270.00 ZŁ
332.10 ZŁ
price from 10 pcs
256.50 ZŁ
315.50 ZŁ
price from 20 pcs
243.00 ZŁ
298.89 ZŁ

Not sure what to buy?

Contact us by phone +48 888 99 98 98 alternatively get in touch using inquiry form through our site.
Strength along with structure of magnets can be calculated using our magnetic mass calculator.

Orders submitted before 14:00 will be dispatched today!

SM 18x150 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x150 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130271
GTIN
5906301812739
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
150 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic rod is the basic building block of grate separators. It is used for cleaning bulk products (flour, sugar, granules) and liquids (oils, juices). Thanks to the use of strong neodymium magnets, the rod catches even fine metal dust.
The outer layer is polished acid-resistant steel, approved for food contact. Inside, there is a stack of strong neodymium magnets in a special configuration. Such construction ensures resistance to corrosion, water, and acids.
Due to high power, direct removal of filings can be troublesome. The most effective method is using adhesive tape to wrap the dirt and pull it off. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
Magnetic induction measured in Gauss (Gs) determines the magnetic flux density on the rod surface. The economical version handles large metal pieces well. High Power versions (~12000-14000 Gs) are necessary to catch metal dust and stainless steel after processing.
We fulfill custom orders for bars matched to your machine. We offer various tip options: threaded holes (e.g., M8, M10), protruding screws, flat studs, or handles. Contact us for a quote on non-standard dimensions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:

  • They retain their full power for nearly 10 years – the drop is just ~1% (based on simulations),
  • They protect against demagnetization induced by surrounding electromagnetic environments remarkably well,
  • The use of a mirror-like silver surface provides a smooth finish,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • With the option for tailored forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Important function in cutting-edge sectors – they are utilized in computer drives, rotating machines, medical equipment as well as high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which makes them useful in compact constructions

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to shocks, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and additionally enhances its overall durability,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can rust. Therefore, for outdoor applications, it's best to use waterproof types made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing fine shapes directly in the magnet,
  • Potential hazard linked to microscopic shards may arise, if ingested accidentally, which is important in the context of child safety. Additionally, tiny components from these magnets can complicate medical imaging when ingested,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Magnetic strength at its maximum – what it depends on?

The given strength of the magnet represents the optimal strength, assessed under optimal conditions, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a polished side
  • in conditions of no clearance
  • under perpendicular detachment force
  • at room temperature

Determinants of practical lifting force of a magnet

In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under attempts to slide the magnet the holding force is lower. Additionally, even a minimal clearance {between} the magnet and the plate reduces the load capacity.

Exercise Caution with Neodymium Magnets

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a significant injury may occur. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Magnets made of neodymium are highly delicate, they easily crack as well as can crumble.

Neodymium magnetic are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

  Neodymium magnets should not be around children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Safety rules!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98