MPL 50x20x20 / N38 - neodymium magnet
lamellar magnet
catalog number 020166
GTIN: 5906301811725
length
50
mm [±0,1 mm]
width
20
mm [±0,1 mm]
height
20
mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
49.94 kg / 489.74 N
magnetic induction ~
478.99 mT / 4,790 Gs
max. temperature
≤ 80
°C
catalog number 020166
GTIN: 5906301811725
length
50 mm [±0,1 mm]
width
20 mm [±0,1 mm]
height
20 mm [±0,1 mm]
magnetizing direction
↑ axial
capacity ~
49.94 kg / 489.74 N
magnetic induction ~
478.99 mT / 4,790 Gs
max. temperature
≤ 80 °C
49.00 ZŁ gross price (including VAT) / pcs +
39.84 ZŁ net price + 23% VAT / pcs
bulk discounts:
need more quantity?Do you have a problem in choosing?
Give us a call tel: +48 22 499 98 98 or contact us through form on the contact page. You can check the strength and the shape of neodymium magnet in our force calculator magnetic mass calculator
Orders placed by 2:00 PM will be shipped on the same business day.
Specification: lamellar magnet 50x20x20 / N38 ↑ axial
Magnetic properties of the material N38
Physical properties of sintered neodymium magnets Nd2Fe14B
Due to their power, flat magnets are frequently applied in devices that need very strong attraction.
Typical temperature resistance of flat magnets is 80°C, but depending on the dimensions, this value grows.
In addition, flat magnets commonly have different coatings applied to their surfaces, such as nickel, gold, or chrome, for enhancing their strength.
The magnet labeled MPL 50x20x20 / N38 and a lifting capacity of 49.94 kg with a weight of a mere 150.00 grams, making it the ideal choice for projects needing a flat magnet.
Contact surface: Due to their flat shape, flat magnets ensure a larger contact surface with adjacent parts, which can be beneficial in applications requiring a stronger magnetic connection.
Technology applications: These are often utilized in different devices, e.g. sensors, stepper motors, or speakers, where the flat shape is necessary for their operation.
Mounting: Their flat shape makes mounting, particularly when it is necessary to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets gives the possibility creators greater flexibility in placing them in devices, which is more difficult with magnets of other shapes.
Stability: In some applications, the flat base of the flat magnet may provide better stability, minimizing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet is dependent on the specific project and requirements. In some cases, other shapes, such as cylindrical or spherical, may be a better choice.
Magnets have two main poles: north (N) and south (S), which attract each other when they are different. Similar poles, e.g. two north poles, repel each other.
Thanks to this principle of operation, magnets are regularly used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the material it is made of.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards and even medical equipment, like pacemakers. For this reason, it is important to exercise caution when using magnets.
List recommended items
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to immense power, neodymium magnets have the following advantages:
- They do not lose their strength (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
- They are highly resistant to demagnetization by external magnetic field,
- In other words, thanks to the glossy nickel, gold, or silver finish, the element gains an aesthetic appearance,
- They have exceptionally high magnetic induction on the surface of the magnet,
- Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
- Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in many variants of shapes and sizes, which amplifies their universality in usage.
- Key role in the industry of new technologies – are used in computer drives, electric drive mechanisms, medical equipment and very modern machines.
Disadvantages of neodymium magnets:
- They are prone to breaking as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
- Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
- Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
- The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
- Health risk associated with microscopic parts of magnets are risky, when accidentally ingested, which is crucial in the context of child safety. It's also worth noting that small elements of these magnets are able to hinder the diagnostic process in case of swallowing.
Handle Neodymium Magnets with Caution
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Magnets made of neodymium are noted for being fragile, which can cause them to crumble.
Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets can become demagnetized at high temperatures.
Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a significant injury may occur. Magnets, depending on their size, can even cut off a finger or alternatively there can be a significant pressure or a fracture.
Keep neodymium magnets away from GPS and smartphones.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are very powerful neodymium magnets?.