tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our store's offer. All "magnets" in our store are available for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnet for fishing F200 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in solid and airtight steel casing are excellent for use in difficult climate conditions, including snow and rain more...

magnetic holders

Holders with magnets can be applied to improve manufacturing, underwater exploration, or locating meteorites made of metal check...

Enjoy delivery of your order on the same day by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 50x20x20 / N38 - lamellar magnet

lamellar magnet

Catalog no 020166

GTIN: 5906301811725

5

length [±0,1 mm]

50 mm

Width [±0,1 mm]

20 mm

Height [±0,1 mm]

20 mm

Weight

150 g

Magnetization Direction

↑ axial

Load capacity

49.94 kg / 489.74 N

Magnetic Induction

478.99 mT

Coating

[NiCuNi] nickel

49.00 with VAT / pcs + price for transport

39.84 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
39.84 ZŁ
49.00 ZŁ
price from 16 pcs
37.45 ZŁ
46.06 ZŁ
price from 56 pcs
35.06 ZŁ
43.12 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 50x20x20 / N38 - lamellar magnet

Specification/characteristics MPL 50x20x20 / N38 - lamellar magnet
properties
values
Cat. no.
020166
GTIN
5906301811725
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
50 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
20 mm [±0,1 mm]
Weight
150 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
49.94 kg / 489.74 N
Magnetic Induction ~ ?
478.99 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets i.e. MPL 50x20x20 / N38 are magnets created from neodymium in a flat form. They are known for their exceptionally potent magnetic properties, which surpass standard iron magnets.
Thanks to their mighty power, flat magnets are commonly used in products that require exceptional adhesion.
Typical temperature resistance of these magnets is 80 °C, but depending on the dimensions, this value rises.
Moreover, flat magnets often have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, to increase their durability.
The magnet with the designation MPL 50x20x20 / N38 and a magnetic strength 49.94 kg with a weight of a mere 150 grams, making it the excellent choice for applications requiring a flat shape.
Neodymium flat magnets provide a range of advantages compared to other magnet shapes, which make them being the best choice for many applications:
Contact surface: Thanks to their flat shape, flat magnets ensure a greater contact surface with adjacent parts, which can be beneficial in applications needing a stronger magnetic connection.
Technology applications: They are often utilized in various devices, e.g. sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: This form's flat shape simplifies mounting, particularly when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets permits creators greater flexibility in placing them in devices, which is more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet can offer better stability, minimizing the risk of sliding or rotating. However, one should remember that the optimal shape of the magnet depends on the specific application and requirements. In certain cases, other shapes, like cylindrical or spherical, are a better choice.
How do magnets work? Magnets attract ferromagnetic materials, such as iron, objects containing nickel, materials with cobalt or alloys of metals with magnetic properties. Additionally, magnets may lesser affect some other metals, such as steel. Magnets are used in many fields.
Magnets work thanks to the properties of their magnetic field, which arises from the ordered movement of electrons in their structure. The magnetic field of these objects creates attractive forces, which affect materials containing cobalt or other ferromagnetic substances.

Magnets have two main poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Similar poles, e.g. two north poles, repel each other.
Due to these properties, magnets are often used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them ideal for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its size and the materials used.
Magnets do not attract plastic, glass, wooden materials and most gemstones. Furthermore, magnets do not affect most metals, such as copper, aluminum materials, copper, aluminum, and gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless they are subjected to an extremely strong magnetic field.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards or medical equipment, like pacemakers. For this reason, it is important to exercise caution when using magnets.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in many variants of shapes and sizes, which amplifies their universality in usage.
  • Wide application in the industry of new technologies – are utilized in computer drives, electric drive mechanisms, medical devices or very highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • High temperatures can reduce the power of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard to health from tiny fragments of magnets are risky, in case of ingestion, which is particularly important in the context of children's health. Furthermore, small elements of these devices are able to be problematic in medical diagnosis in case of swallowing.

Safety Precautions

Neodymium magnetic are extremely delicate, they easily break and can become damaged.

Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to insert fingers between magnets or alternatively in their path when attract. Depending on how massive the neodymium magnets are, they can lead to a cut or a fracture.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Pay attention!

In order to illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98