tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. All "neodymium magnets" on our website are available for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnets for searching F200 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in airtight, solid enclosure are ideally suited for use in difficult weather conditions, including during snow and rain more information...

magnets with holders

Magnetic holders can be applied to enhance production processes, exploring underwater areas, or locating meteors from gold more information...

Enjoy shipping of your order on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping in 2 days! Bestseller

MPL 5x5x1 / N38 - neodymium magnet

lamellar magnet

catalog number 020170

GTIN: 5906301811763

5.0

length

5 mm [±0,1 mm]

width

5 mm [±0,1 mm]

height

1 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

0.39 kg / 3.82 N

magnetic induction ~

209.53 mT / 2,095 Gs

max. temperature

≤ 80 °C

0.14 gross price (including VAT) / pcs +

0.11 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.11 ZŁ
0.14 ZŁ
price from 6000 pcs
0.10 ZŁ
0.12 ZŁ
price from 22000 pcs
0.09 ZŁ
0.11 ZŁ

Want to talk about magnets?

Call us tel: +48 22 499 98 98 or write through form on our website. You can check the lifting capacity and the appearance of neodymium magnets in our power calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: lamellar magnet 5x5x1 / N38 ↑ axial

Characteristics: lamellar magnet 5x5x1 / N38 ↑ axial
Properties
Values
catalog number
020170
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
length
5 mm [±0,1 mm]
width
5 mm [±0,1 mm]
height
1 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
0.39 kg / 3.82 N
magnetic induction ~ ?
209.53 mT / 2,095 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
0.19 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium flat magnets min. MPL 5x5x1 / N38 are magnets created from neodymium in a rectangular form. They are valued for their exceptionally potent magnetic properties, which are much stronger than standard ferrite magnets.
Thanks to their high strength, flat magnets are frequently used in structures that need very strong attraction.
Most common temperature resistance of these magnets is 80°C, but depending on the dimensions, this value grows.
Moreover, flat magnets commonly have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, to improve their corrosion resistance.
The magnet with the designation MPL 5x5x1 / N38 and a lifting capacity of 0.39 kg weighing only 0.19 grams, making it the perfect choice for projects needing a flat magnet.
Neodymium flat magnets provide a range of advantages compared to other magnet shapes, which lead to them being the best choice for various uses:
Contact surface: Thanks to their flat shape, flat magnets guarantee a greater contact surface with adjacent parts, which can be beneficial in applications requiring a stronger magnetic connection.
Technology applications: These are often applied in various devices, such as sensors, stepper motors, or speakers, where the flat shape is crucial for their operation.
Mounting: The flat form's flat shape simplifies mounting, especially when it is necessary to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets gives the possibility designers greater flexibility in arranging them in devices, which can be more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet can offer better stability, reducing the risk of shifting or rotating. It’s important to keep in mind that the optimal shape of the magnet is dependent on the specific application and requirements. In certain cases, other shapes, such as cylindrical or spherical, may be a better choice.
Attracted by magnets are ferromagnetic materials, such as iron elements, objects containing nickel, cobalt and alloys of metals with magnetic properties. Moreover, magnets may lesser affect alloys containing iron, such as steel. Magnets are used in many fields.
Magnets work thanks to the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. Magnetic fields of magnets creates attractive interactions, which attract objects made of nickel or other ferromagnetic substances.

Magnets have two poles: north (N) and south (S), which attract each other when they are oppositely oriented. Poles of the same kind, e.g. two north poles, repel each other.
Due to these properties, magnets are commonly used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them ideal for applications requiring powerful magnetic fields. Moreover, the strength of a magnet depends on its size and the material it is made of.
Not all materials react to magnets, and examples of such substances are plastics, glass, wooden materials or most gemstones. Moreover, magnets do not affect certain metals, such as copper items, aluminum, items made of gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless exposed to a very strong magnetic field.
It’s worth noting that high temperatures can weaken the magnet's effect. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards and even electronic devices sensitive to magnetic fields. For this reason, it is important to avoid placing magnets near such devices.

Find suggested articles

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in many variants of shapes and sizes, which enhances their versatility in applications.
  • Wide application in advanced technologically fields – find application in computer drives, electric drive mechanisms, medical apparatus or other advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard to health from tiny fragments of magnets pose a threat, when accidentally ingested, which is crucial in the context of child safety. It's also worth noting that miniscule components of these devices can complicate diagnosis after entering the body.

Handle Neodymium Magnets Carefully

Keep neodymium magnets away from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will crack or crumble with uncontrolled connecting to each other. You can't move them to each other. At a distance less than 10 cm you should have them extremely firmly.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are delicate as well as can easily break as well as shatter.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

 It is important to keep neodymium magnets out of reach from youngest children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98