MPL 5x5x1 / N38 - lamellar magnet
lamellar magnet
Catalog no 020170
GTIN/EAN: 5906301811763
length
5 mm [±0,1 mm]
Width
5 mm [±0,1 mm]
Height
1 mm [±0,1 mm]
Weight
0.19 g
Magnetization Direction
↑ axial
Load capacity
0.34 kg / 3.30 N
Magnetic Induction
209.53 mT / 2095 Gs
Coating
[NiCuNi] Nickel
0.1845 ZŁ with VAT / pcs + price for transport
0.1500 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 888 99 98 98
or drop us a message by means of
request form
the contact form page.
Specifications and form of a magnet can be tested using our
force calculator.
Order by 14:00 and we’ll ship today!
Technical details - MPL 5x5x1 / N38 - lamellar magnet
Specification / characteristics - MPL 5x5x1 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020170 |
| GTIN/EAN | 5906301811763 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 5 mm [±0,1 mm] |
| Width | 5 mm [±0,1 mm] |
| Height | 1 mm [±0,1 mm] |
| Weight | 0.19 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.34 kg / 3.30 N |
| Magnetic Induction ~ ? | 209.53 mT / 2095 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical simulation of the magnet - data
The following data are the direct effect of a physical analysis. Values were calculated on algorithms for the material Nd2Fe14B. Actual performance may deviate from the simulation results. Use these calculations as a supplementary guide for designers.
Table 1: Static force (pull vs distance) - characteristics
MPL 5x5x1 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2094 Gs
209.4 mT
|
0.34 kg / 0.75 LBS
340.0 g / 3.3 N
|
low risk |
| 1 mm |
1514 Gs
151.4 mT
|
0.18 kg / 0.39 LBS
177.8 g / 1.7 N
|
low risk |
| 2 mm |
922 Gs
92.2 mT
|
0.07 kg / 0.15 LBS
65.9 g / 0.6 N
|
low risk |
| 3 mm |
543 Gs
54.3 mT
|
0.02 kg / 0.05 LBS
22.9 g / 0.2 N
|
low risk |
| 5 mm |
209 Gs
20.9 mT
|
0.00 kg / 0.01 LBS
3.4 g / 0.0 N
|
low risk |
| 10 mm |
38 Gs
3.8 mT
|
0.00 kg / 0.00 LBS
0.1 g / 0.0 N
|
low risk |
| 15 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
low risk |
| 20 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
low risk |
| 30 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
low risk |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
low risk |
Table 2: Shear load (wall)
MPL 5x5x1 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.07 kg / 0.15 LBS
68.0 g / 0.7 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 0.08 LBS
36.0 g / 0.4 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.03 LBS
14.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.01 LBS
4.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - vertical pull
MPL 5x5x1 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.10 kg / 0.22 LBS
102.0 g / 1.0 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.07 kg / 0.15 LBS
68.0 g / 0.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 0.07 LBS
34.0 g / 0.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.17 kg / 0.37 LBS
170.0 g / 1.7 N
|
Table 4: Steel thickness (substrate influence) - power losses
MPL 5x5x1 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 0.07 LBS
34.0 g / 0.3 N
|
| 1 mm |
|
0.09 kg / 0.19 LBS
85.0 g / 0.8 N
|
| 2 mm |
|
0.17 kg / 0.37 LBS
170.0 g / 1.7 N
|
| 3 mm |
|
0.26 kg / 0.56 LBS
255.0 g / 2.5 N
|
| 5 mm |
|
0.34 kg / 0.75 LBS
340.0 g / 3.3 N
|
| 10 mm |
|
0.34 kg / 0.75 LBS
340.0 g / 3.3 N
|
| 11 mm |
|
0.34 kg / 0.75 LBS
340.0 g / 3.3 N
|
| 12 mm |
|
0.34 kg / 0.75 LBS
340.0 g / 3.3 N
|
Table 5: Thermal stability (stability) - thermal limit
MPL 5x5x1 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.34 kg / 0.75 LBS
340.0 g / 3.3 N
|
OK |
| 40 °C | -2.2% |
0.33 kg / 0.73 LBS
332.5 g / 3.3 N
|
OK |
| 60 °C | -4.4% |
0.33 kg / 0.72 LBS
325.0 g / 3.2 N
|
|
| 80 °C | -6.6% |
0.32 kg / 0.70 LBS
317.6 g / 3.1 N
|
|
| 100 °C | -28.8% |
0.24 kg / 0.53 LBS
242.1 g / 2.4 N
|
Table 6: Two magnets (repulsion) - forces in the system
MPL 5x5x1 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.68 kg / 1.49 LBS
3 601 Gs
|
0.10 kg / 0.22 LBS
101 g / 1.0 N
|
N/A |
| 1 mm |
0.52 kg / 1.15 LBS
3 682 Gs
|
0.08 kg / 0.17 LBS
78 g / 0.8 N
|
0.47 kg / 1.04 LBS
~0 Gs
|
| 2 mm |
0.35 kg / 0.78 LBS
3 028 Gs
|
0.05 kg / 0.12 LBS
53 g / 0.5 N
|
0.32 kg / 0.70 LBS
~0 Gs
|
| 3 mm |
0.22 kg / 0.48 LBS
2 388 Gs
|
0.03 kg / 0.07 LBS
33 g / 0.3 N
|
0.20 kg / 0.44 LBS
~0 Gs
|
| 5 mm |
0.08 kg / 0.17 LBS
1 413 Gs
|
0.01 kg / 0.03 LBS
12 g / 0.1 N
|
0.07 kg / 0.15 LBS
~0 Gs
|
| 10 mm |
0.01 kg / 0.01 LBS
417 Gs
|
0.00 kg / 0.00 LBS
1 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 LBS
77 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 LBS
6 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 LBS
3 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 LBS
2 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 LBS
1 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 LBS
1 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 LBS
1 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
Table 7: Hazards (electronics) - warnings
MPL 5x5x1 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 2.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 1.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.0 cm |
| Car key | 50 Gs (5.0 mT) | 1.0 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (cracking risk) - collision effects
MPL 5x5x1 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
42.67 km/h
(11.85 m/s)
|
0.01 J | |
| 30 mm |
73.89 km/h
(20.53 m/s)
|
0.04 J | |
| 50 mm |
95.40 km/h
(26.50 m/s)
|
0.07 J | |
| 100 mm |
134.91 km/h
(37.48 m/s)
|
0.13 J |
Table 9: Coating parameters (durability)
MPL 5x5x1 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MPL 5x5x1 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 615 Mx | 6.2 µWb |
| Pc Coefficient | 0.26 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MPL 5x5x1 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.34 kg | Standard |
| Water (riverbed) |
0.39 kg
(+0.05 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Caution: On a vertical surface, the magnet retains just ~20% of its nominal pull.
2. Steel thickness impact
*Thin steel (e.g. 0.5mm PC case) severely limits the holding force.
3. Thermal stability
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.26
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out more deals
Pros as well as cons of rare earth magnets.
Benefits
- They virtually do not lose power, because even after 10 years the decline in efficiency is only ~1% (based on calculations),
- They have excellent resistance to weakening of magnetic properties as a result of external fields,
- Thanks to the elegant finish, the plating of Ni-Cu-Ni, gold-plated, or silver gives an clean appearance,
- Magnetic induction on the surface of the magnet is maximum,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
- Thanks to versatility in shaping and the ability to adapt to specific needs,
- Wide application in advanced technology sectors – they are utilized in computer drives, electric motors, precision medical tools, also multitasking production systems.
- Relatively small size with high pulling force – neodymium magnets offer high power in small dimensions, which enables their usage in compact constructions
Disadvantages
- To avoid cracks under impact, we suggest using special steel holders. Such a solution secures the magnet and simultaneously improves its durability.
- When exposed to high temperature, neodymium magnets suffer a drop in power. Often, when the temperature exceeds 80°C, their power decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- Magnets exposed to a humid environment can rust. Therefore when using outdoors, we suggest using water-impermeable magnets made of rubber, plastic or other material resistant to moisture
- We recommend a housing - magnetic holder, due to difficulties in producing nuts inside the magnet and complex shapes.
- Possible danger resulting from small fragments of magnets pose a threat, in case of ingestion, which is particularly important in the aspect of protecting the youngest. Furthermore, small elements of these magnets are able to be problematic in diagnostics medical in case of swallowing.
- High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which hinders application in large quantities
Holding force characteristics
Maximum magnetic pulling force – what contributes to it?
- on a block made of structural steel, optimally conducting the magnetic flux
- whose thickness reaches at least 10 mm
- with a plane free of scratches
- under conditions of no distance (metal-to-metal)
- under vertical force direction (90-degree angle)
- at ambient temperature room level
Practical aspects of lifting capacity – factors
- Air gap (betwixt the magnet and the metal), since even a very small clearance (e.g. 0.5 mm) results in a decrease in lifting capacity by up to 50% (this also applies to paint, corrosion or debris).
- Force direction – note that the magnet holds strongest perpendicularly. Under sliding down, the capacity drops drastically, often to levels of 20-30% of the nominal value.
- Steel thickness – too thin sheet does not accept the full field, causing part of the flux to be lost to the other side.
- Material composition – different alloys attracts identically. Alloy additives weaken the interaction with the magnet.
- Smoothness – full contact is possible only on smooth steel. Any scratches and bumps reduce the real contact area, weakening the magnet.
- Temperature – heating the magnet causes a temporary drop of induction. It is worth remembering the thermal limit for a given model.
Lifting capacity was assessed by applying a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, in contrast under attempts to slide the magnet the holding force is lower. Additionally, even a small distance between the magnet’s surface and the plate decreases the load capacity.
Safe handling of NdFeB magnets
Adults only
Absolutely keep magnets away from children. Ingestion danger is high, and the effects of magnets clamping inside the body are tragic.
Fire risk
Fire hazard: Neodymium dust is highly flammable. Avoid machining magnets without safety gear as this risks ignition.
Permanent damage
Regular neodymium magnets (N-type) undergo demagnetization when the temperature exceeds 80°C. This process is irreversible.
Skin irritation risks
Certain individuals experience a hypersensitivity to Ni, which is the standard coating for neodymium magnets. Frequent touching might lead to skin redness. We recommend wear safety gloves.
Precision electronics
A powerful magnetic field negatively affects the operation of magnetometers in smartphones and GPS navigation. Do not bring magnets near a smartphone to prevent breaking the sensors.
Serious injuries
Mind your fingers. Two powerful magnets will join instantly with a force of massive weight, crushing anything in their path. Exercise extreme caution!
Electronic devices
Avoid bringing magnets near a purse, computer, or screen. The magnetism can permanently damage these devices and wipe information from cards.
Conscious usage
Use magnets consciously. Their immense force can shock even professionals. Stay alert and do not underestimate their power.
Material brittleness
Neodymium magnets are ceramic materials, which means they are prone to chipping. Impact of two magnets leads to them cracking into shards.
Medical implants
Medical warning: Neodymium magnets can deactivate pacemakers and defibrillators. Stay away if you have electronic implants.
