MPL 5x4x1 / N38 - lamellar magnet
lamellar magnet
Catalog no 020169
GTIN/EAN: 5906301811756
length
5 mm [±0,1 mm]
Width
4 mm [±0,1 mm]
Height
1 mm [±0,1 mm]
Weight
0.15 g
Magnetization Direction
↑ axial
Load capacity
0.32 kg / 3.16 N
Magnetic Induction
232.88 mT / 2329 Gs
Coating
[NiCuNi] Nickel
0.1845 ZŁ with VAT / pcs + price for transport
0.1500 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 888 99 98 98
if you prefer drop us a message by means of
request form
the contact page.
Specifications as well as structure of a neodymium magnet can be estimated using our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
Physical properties - MPL 5x4x1 / N38 - lamellar magnet
Specification / characteristics - MPL 5x4x1 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020169 |
| GTIN/EAN | 5906301811756 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 5 mm [±0,1 mm] |
| Width | 4 mm [±0,1 mm] |
| Height | 1 mm [±0,1 mm] |
| Weight | 0.15 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.32 kg / 3.16 N |
| Magnetic Induction ~ ? | 232.88 mT / 2329 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering modeling of the magnet - report
These values constitute the outcome of a physical calculation. Values are based on algorithms for the class Nd2Fe14B. Real-world conditions might slightly differ from theoretical values. Please consider these data as a preliminary roadmap when designing systems.
Table 1: Static pull force (pull vs gap) - characteristics
MPL 5x4x1 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2327 Gs
232.7 mT
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
weak grip |
| 1 mm |
1559 Gs
155.9 mT
|
0.14 kg / 0.32 lbs
143.7 g / 1.4 N
|
weak grip |
| 2 mm |
876 Gs
87.6 mT
|
0.05 kg / 0.10 lbs
45.3 g / 0.4 N
|
weak grip |
| 3 mm |
488 Gs
48.8 mT
|
0.01 kg / 0.03 lbs
14.1 g / 0.1 N
|
weak grip |
| 5 mm |
177 Gs
17.7 mT
|
0.00 kg / 0.00 lbs
1.9 g / 0.0 N
|
weak grip |
| 10 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
weak grip |
| 15 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 20 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Sliding force (wall)
MPL 5x4x1 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
|
| 1 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - vertical pull
MPL 5x4x1 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.10 kg / 0.21 lbs
96.0 g / 0.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MPL 5x4x1 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 1 mm |
|
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
|
| 2 mm |
|
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
| 3 mm |
|
0.24 kg / 0.53 lbs
240.0 g / 2.4 N
|
| 5 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 10 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 11 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 12 mm |
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
Table 5: Thermal resistance (material behavior) - thermal limit
MPL 5x4x1 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
OK |
| 40 °C | -2.2% |
0.31 kg / 0.69 lbs
313.0 g / 3.1 N
|
OK |
| 60 °C | -4.4% |
0.31 kg / 0.67 lbs
305.9 g / 3.0 N
|
|
| 80 °C | -6.6% |
0.30 kg / 0.66 lbs
298.9 g / 2.9 N
|
|
| 100 °C | -28.8% |
0.23 kg / 0.50 lbs
227.8 g / 2.2 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field collision
MPL 5x4x1 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.67 kg / 1.47 lbs
3 878 Gs
|
0.10 kg / 0.22 lbs
100 g / 1.0 N
|
N/A |
| 1 mm |
0.48 kg / 1.06 lbs
3 959 Gs
|
0.07 kg / 0.16 lbs
72 g / 0.7 N
|
0.43 kg / 0.96 lbs
~0 Gs
|
| 2 mm |
0.30 kg / 0.66 lbs
3 118 Gs
|
0.04 kg / 0.10 lbs
45 g / 0.4 N
|
0.27 kg / 0.59 lbs
~0 Gs
|
| 3 mm |
0.17 kg / 0.38 lbs
2 356 Gs
|
0.03 kg / 0.06 lbs
26 g / 0.3 N
|
0.15 kg / 0.34 lbs
~0 Gs
|
| 5 mm |
0.05 kg / 0.12 lbs
1 302 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.10 lbs
~0 Gs
|
| 10 mm |
0.00 kg / 0.01 lbs
355 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
63 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (electronics) - precautionary measures
MPL 5x4x1 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 2.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 1.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.0 cm |
| Remote | 50 Gs (5.0 mT) | 1.0 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Dynamics (cracking risk) - warning
MPL 5x4x1 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
46.59 km/h
(12.94 m/s)
|
0.01 J | |
| 30 mm |
80.68 km/h
(22.41 m/s)
|
0.04 J | |
| 50 mm |
104.16 km/h
(28.93 m/s)
|
0.06 J | |
| 100 mm |
147.30 km/h
(40.92 m/s)
|
0.13 J |
Table 9: Corrosion resistance
MPL 5x4x1 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MPL 5x4x1 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 531 Mx | 5.3 µWb |
| Pc Coefficient | 0.29 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MPL 5x4x1 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.32 kg | Standard |
| Water (riverbed) |
0.37 kg
(+0.05 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Caution: On a vertical wall, the magnet holds merely ~20% of its perpendicular strength.
2. Plate thickness effect
*Thin steel (e.g. computer case) significantly reduces the holding force.
3. Heat tolerance
*For standard magnets, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.29
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View more products
Strengths and weaknesses of rare earth magnets.
Benefits
- They have unchanged lifting capacity, and over around 10 years their attraction force decreases symbolically – ~1% (according to theory),
- Magnets perfectly protect themselves against demagnetization caused by ambient magnetic noise,
- The use of an metallic finish of noble metals (nickel, gold, silver) causes the element to have aesthetics,
- Magnetic induction on the surface of the magnet turns out to be extremely intense,
- Through (adequate) combination of ingredients, they can achieve high thermal strength, allowing for functioning at temperatures reaching 230°C and above...
- Thanks to the option of precise molding and customization to individualized requirements, NdFeB magnets can be manufactured in a wide range of forms and dimensions, which makes them more universal,
- Fundamental importance in innovative solutions – they are used in hard drives, electric motors, precision medical tools, also complex engineering applications.
- Thanks to their power density, small magnets offer high operating force, occupying minimum space,
Limitations
- They are prone to damage upon heavy impacts. To avoid cracks, it is worth protecting magnets in a protective case. Such protection not only protects the magnet but also improves its resistance to damage
- Neodymium magnets decrease their power under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- Magnets exposed to a humid environment can rust. Therefore when using outdoors, we suggest using water-impermeable magnets made of rubber, plastic or other material resistant to moisture
- We recommend casing - magnetic mechanism, due to difficulties in realizing nuts inside the magnet and complicated forms.
- Potential hazard related to microscopic parts of magnets are risky, in case of ingestion, which gains importance in the context of child safety. It is also worth noting that small components of these magnets can disrupt the diagnostic process medical when they are in the body.
- With large orders the cost of neodymium magnets is economically unviable,
Pull force analysis
Highest magnetic holding force – what affects it?
- with the use of a sheet made of special test steel, guaranteeing full magnetic saturation
- with a cross-section of at least 10 mm
- with an ground touching surface
- with total lack of distance (no impurities)
- for force acting at a right angle (in the magnet axis)
- in temp. approx. 20°C
Determinants of practical lifting force of a magnet
- Space between surfaces – even a fraction of a millimeter of separation (caused e.g. by varnish or unevenness) diminishes the magnet efficiency, often by half at just 0.5 mm.
- Angle of force application – maximum parameter is available only during perpendicular pulling. The shear force of the magnet along the plate is typically several times smaller (approx. 1/5 of the lifting capacity).
- Element thickness – for full efficiency, the steel must be sufficiently thick. Paper-thin metal limits the lifting capacity (the magnet "punches through" it).
- Metal type – different alloys reacts the same. Alloy additives worsen the attraction effect.
- Base smoothness – the smoother and more polished the surface, the larger the contact zone and higher the lifting capacity. Unevenness creates an air distance.
- Temperature – temperature increase results in weakening of induction. Check the maximum operating temperature for a given model.
Lifting capacity was assessed by applying a steel plate with a smooth surface of optimal thickness (min. 20 mm), under vertically applied force, however under shearing force the load capacity is reduced by as much as 75%. Moreover, even a small distance between the magnet’s surface and the plate reduces the lifting capacity.
Precautions when working with NdFeB magnets
Handling guide
Before use, read the rules. Sudden snapping can break the magnet or hurt your hand. Be predictive.
Magnet fragility
Protect your eyes. Magnets can explode upon uncontrolled impact, launching sharp fragments into the air. Wear goggles.
Adults only
Adult use only. Tiny parts pose a choking risk, leading to intestinal necrosis. Store away from kids and pets.
Warning for allergy sufferers
A percentage of the population experience a hypersensitivity to Ni, which is the standard coating for neodymium magnets. Extended handling can result in an allergic reaction. We strongly advise use safety gloves.
Threat to navigation
Note: rare earth magnets generate a field that disrupts sensitive sensors. Keep a separation from your phone, tablet, and GPS.
Dust is flammable
Fire warning: Rare earth powder is explosive. Avoid machining magnets in home conditions as this risks ignition.
Medical implants
Individuals with a pacemaker should maintain an large gap from magnets. The magnetism can stop the functioning of the implant.
Data carriers
Device Safety: Strong magnets can ruin payment cards and delicate electronics (pacemakers, hearing aids, mechanical watches).
Operating temperature
Regular neodymium magnets (N-type) lose power when the temperature surpasses 80°C. The loss of strength is permanent.
Physical harm
Danger of trauma: The attraction force is so immense that it can cause blood blisters, crushing, and even bone fractures. Use thick gloves.
