SM 32x225 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130375
GTIN: 5906301813231
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
225 mm
Weight
1245 g
750.30 ZŁ with VAT / pcs + price for transport
610.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Pick up the phone and ask
+48 22 499 98 98
or get in touch by means of
our online form
the contact page.
Lifting power and appearance of magnetic components can be reviewed using our
online calculation tool.
Orders submitted before 14:00 will be dispatched today!
SM 32x225 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their strong power, neodymium magnets have these key benefits:
- They have unchanged lifting capacity, and over nearly 10 years their performance decreases symbolically – ~1% (in testing),
- Their ability to resist magnetic interference from external fields is impressive,
- The use of a polished nickel surface provides a refined finish,
- They possess significant magnetic force measurable at the magnet’s surface,
- Thanks to their exceptional temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- The ability for accurate shaping or adjustment to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
- Important function in modern technologies – they are used in data storage devices, rotating machines, clinical machines as well as other advanced devices,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of magnetic elements:
- They can break when subjected to a sudden impact. If the magnets are exposed to shocks, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and additionally enhances its overall robustness,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to humidity can corrode. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
- Limited ability to create internal holes in the magnet – the use of a external casing is recommended,
- Potential hazard linked to microscopic shards may arise, when consumed by mistake, which is important in the protection of children. Moreover, tiny components from these magnets might complicate medical imaging if inside the body,
- Due to expensive raw materials, their cost is above average,
Magnetic strength at its maximum – what it depends on?
The given pulling force of the magnet corresponds to the maximum force, assessed in a perfect environment, that is:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a polished side
- with no separation
- with vertical force applied
- at room temperature
Determinants of lifting force in real conditions
Practical lifting force is determined by elements, by priority:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured with the use of a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, however under shearing force the lifting capacity is smaller. Moreover, even a small distance {between} the magnet and the plate reduces the holding force.
Safety Precautions
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnetic are known for their fragility, which can cause them to crumble.
Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will crack. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
Do not give neodymium magnets to children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Magnets will bounce and touch together within a radius of several to almost 10 cm from each other.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Do not bring neodymium magnets close to GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Exercise caution!
So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.