e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnetic Nd2Fe14B - our offer. Practically all "neodymium magnets" in our store are available for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to buy very strong neodymium magnet? Magnet holders in airtight, solid enclosure are excellent for use in difficult weather conditions, including during rain and snow more...

magnetic holders

Magnetic holders can be used to improve production, exploring underwater areas, or locating meteors from gold more information...

Shipping is shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping in 2 days!

SM 32x225 [2xM8] / N42 - magnetic roller

magnetic separator

catalog number 130375

GTIN: 5906301813231

no reviews

diameter Ø

32 mm [±0,1 mm]

height

225 mm [±0,1 mm]

max. temperature

≤ 80 °C

750.30 gross price (including VAT) / pcs +

610.00 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
610.00 ZŁ
750.30 ZŁ
price from 4 pcs
579.50 ZŁ
712.78 ZŁ
price from 8 pcs
549.00 ZŁ
675.27 ZŁ

Want to talk about magnets?

Call us tel: +48 22 499 98 98 or write via contact form on our website. You can check the lifting capacity as well as the shape of neodymium magnets in our magnetic calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: magnetic separator 32x225 [2xM8] / N42

Characteristics: magnetic separator 32x225 [2xM8] / N42
Properties
Values
catalog number
130375
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
32 mm [±0,1 mm]
height
225 mm [±0,1 mm]
max. temperature ?
≤ 80 °C
weight
1245.00 g
execution tolerance
± 0.1 mm
rodzaj materiału
AISI 304 - bezpieczna dla żywności
rodzaj magnesów
NdFeB N42
ilość gwintów
2x [M8] wewnętrzne
biegunowość
obwodowa - 8 nadbiegunników
indukcja magnetyczna
~ 8 000 Gauss [±5%]
max. temp. pracy
poniżej ≤ 80°C
grubość rury osłonowej
1 mm

Magnetic properties of the material N42

material characteristics N42
Properties
Values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
40-42
BH max MGOe
energy density [Min. - Max.]
318-334
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, placed in a casing made of stainless steel usually AISI304. In this way, it is possible to effectively segregate ferromagnetic elements from different substances. A key aspect of its operation is the repulsion of magnetic poles N and S, which causes magnetic substances to be collected. The thickness of the embedded magnet and its structure pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to segregate ferromagnetic elements. If the cans are ferromagnetic, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are used in the food sector to clear metallic contaminants, for example iron fragments or iron dust. Our rods are made from acid-resistant steel, EN 1.4301, approved for contact with food.
Magnetic rollers, often called cylindrical magnets, find application in metal separation, food production as well as recycling. They help in removing iron dust during the process of separating metals from other materials.
Our magnetic rollers consist of neodymium magnets embedded in a tube of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded holes - 18 mm, which enables simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars stand out in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the stronger the magnet, the more efficient it is. However, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines are more compressed. By contrast, when the magnet is thick, the force lines will be extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, usually stainless steel is used, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, type AISI 316 steel is highly recommended due to its outstanding corrosion resistance.
Magnetic bars are characterized by their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, in contrast to other separators that may utilize complex filtration systems.
Technical designations and terms related to magnetic separators include amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. On the other hand, among the drawbacks, one can mention the need for regular cleaning, higher cost, and potential installation challenges.
To properly maintain of neodymium magnetic rollers, it is recommended washing regularly, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Magnetic field measurements is recommended be carried out every two years. Care should be taken, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Find suggested articles

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which enhances their versatility in applications.
  • Key role in the industry of new technologies – are utilized in hard drives, electric motors, medical apparatus or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They can break as they are extremely fragile when subjected to a strong impact. If the magnets are exposed to impacts, it is suggested using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Potential hazard associated with microscopic parts of magnets pose a threat, in case of ingestion, which is particularly important in the context of children's health. Furthermore, small elements of these magnets have the potential to complicate diagnosis after entering the body.

Exercise Caution with Neodymium Magnets

  Do not give neodymium magnets to children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can surprise you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.

In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnetic are extremely fragile, leading to shattering.

Neodymium magnetic are fragile as well as will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98