tel: +48 888 99 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our proposal. All magnesy in our store are in stock for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnet for searching F200 GOLD

Where to buy very strong neodymium magnet? Magnetic holders in solid and airtight enclosure are ideally suited for use in difficult weather, including during snow and rain see...

magnetic holders

Holders with magnets can be applied to improve production, exploring underwater areas, or searching for space rocks from gold read...

Enjoy shipping of your order on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available Ships tomorrow

SM 32x225 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130375

GTIN: 5906301813231

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

225 mm

Weight

1245 g

750.30 with VAT / pcs + price for transport

610.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
610.00 ZŁ
750.30 ZŁ
price from 5 pcs
579.50 ZŁ
712.79 ZŁ
price from 10 pcs
549.00 ZŁ
675.27 ZŁ

Want to negotiate?

Pick up the phone and ask +48 888 99 98 98 otherwise let us know by means of form through our site.
Force and shape of a magnet can be reviewed on our our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

SM 32x225 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x225 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130375
GTIN
5906301813231
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
1245 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

This product serves to catch ferromagnetic impurities from raw materials. It is used for cleaning bulk products (flour, sugar, granules) and liquids (oils, juices). Thanks to the use of strong neodymium magnets, the rod catches even fine metal dust.
The outer layer is polished acid-resistant steel, approved for food contact. The center is filled with NdFeB magnets arranged to maximize the field on the surface. Such construction ensures resistance to corrosion, water, and acids.
Metal impurities are strongly attracted, making manual removal difficult. We recommend taping the filings and peeling them off together. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
The more Gauss, the smaller and weakly magnetic particles will be caught. For basic iron protection, standard power is enough. High induction is required when contaminants are microscopic.
Yes, as a manufacturer, we make rods of any length and diameter (standard is 25mm and 32mm). The rod end is adapted to the mounting system in your separator. Contact us for a quote on non-standard dimensions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their notable holding force, neodymium magnets have these key benefits:

  • They have constant strength, and over around ten years their attraction force decreases symbolically – ~1% (according to theory),
  • They remain magnetized despite exposure to magnetic surroundings,
  • In other words, due to the shiny gold coating, the magnet obtains an stylish appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for custom shaping and adjustment to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
  • Wide application in advanced technical fields – they are used in hard drives, rotating machines, diagnostic apparatus along with high-tech tools,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to external force, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally strengthens its overall durability,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to wet conditions can corrode. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing complex structures directly in the magnet,
  • Potential hazard linked to microscopic shards may arise, when consumed by mistake, which is important in the protection of children. Additionally, minuscule fragments from these assemblies can hinder health screening when ingested,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting capacity of the magnetwhat affects it?

The given holding capacity of the magnet corresponds to the highest holding force, measured in the best circumstances, that is:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • under standard ambient temperature

Practical lifting capacity: influencing factors

Practical lifting force is dependent on elements, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed using a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, however under parallel forces the holding force is lower. Additionally, even a minimal clearance {between} the magnet’s surface and the plate decreases the load capacity.

Handle Neodymium Magnets Carefully

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets made of neodymium are delicate as well as can easily crack and get damaged.

Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Warning!

To illustrate why neodymium magnets are so dangerous, read the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98