SM 32x225 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130375
GTIN: 5906301813231
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
225 mm
Weight
1245 g
750.30 ZŁ with VAT / pcs + price for transport
610.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Call us
+48 22 499 98 98
or get in touch through
request form
the contact section.
Weight and shape of magnets can be estimated using our
our magnetic calculator.
Same-day shipping for orders placed before 14:00.
SM 32x225 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (in laboratory conditions),
- They are very resistant to demagnetization caused by external magnetic fields,
- Because of the reflective layer of nickel, the component looks visually appealing,
- They have very high magnetic induction on the surface of the magnet,
- Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which expands their functional possibilities,
- Important function in modern technologies – they serve a purpose in data storage devices, rotating machines, diagnostic apparatus as well as technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which makes them useful in miniature devices
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage and strengthens its overall strength,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of rubber for outdoor use,
- Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
- Potential hazard due to small fragments may arise, if ingested accidentally, which is important in the family environments. It should also be noted that small elements from these magnets have the potential to complicate medical imaging if inside the body,
- Due to a complex production process, their cost is relatively high,
Optimal lifting capacity of a neodymium magnet – what contributes to it?
The given lifting capacity of the magnet represents the maximum lifting force, measured in ideal conditions, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a smooth surface
- in conditions of no clearance
- under perpendicular detachment force
- under standard ambient temperature
Key elements affecting lifting force
Practical lifting force is dependent on factors, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under attempts to slide the magnet the holding force is lower. Additionally, even a minimal clearance {between} the magnet’s surface and the plate lowers the holding force.
Precautions
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be around youngest children.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets may crack or crumble with uncontrolled connecting to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them very strongly.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets are highly susceptible to damage, leading to their cracking.
Neodymium magnets are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Safety rules!
So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.
